前端技术
HTML
CSS
Javascript
前端框架和UI库
VUE
ReactJS
AngularJS
JQuery
NodeJS
JSON
Element-UI
Bootstrap
Material UI
服务端和客户端
Java
Python
PHP
Golang
Scala
Kotlin
Groovy
Ruby
Lua
.net
c#
c++
后端WEB和工程框架
SpringBoot
SpringCloud
Struts2
MyBatis
Hibernate
Tornado
Beego
Go-Spring
Go Gin
Go Iris
Dubbo
HessianRPC
Maven
Gradle
数据库
MySQL
Oracle
Mongo
中间件与web容器
Redis
MemCache
Etcd
Cassandra
Kafka
RabbitMQ
RocketMQ
ActiveMQ
Nacos
Consul
Tomcat
Nginx
Netty
大数据技术
Hive
Impala
ClickHouse
DorisDB
Greenplum
PostgreSQL
HBase
Kylin
Hadoop
Apache Pig
ZooKeeper
SeaTunnel
Sqoop
Datax
Flink
Spark
Mahout
数据搜索与日志
ElasticSearch
Apache Lucene
Apache Solr
Kibana
Logstash
数据可视化与OLAP
Apache Atlas
Superset
Saiku
Tesseract
系统与容器
Linux
Shell
Docker
Kubernetes
[区县层级关系SQL实现]的搜索结果
这里是文章列表。热门标签的颜色随机变换,标签颜色没有特殊含义。
点击某个标签可搜索标签相关的文章。
点击某个标签可搜索标签相关的文章。
JSON
...大地简化了JSON至关系型数据库的转换流程,提升了数据集成效率。 同时,一些开源项目也在积极探索这一领域,如PostgreSQL的jsonb数据类型就支持直接存储JSON并进行高效的查询操作,使得JSON数据可以直接在数据库层面进行深度处理,无需预先转换成传统的表结构。 此外,针对嵌套层级较深或动态结构变化频繁的JSON数据,有学者提出了基于NoSQL数据库的解决方案,如MongoDB的文档模型能很好地适应JSON数据的特性,实现灵活且高性能的数据管理。 总的来说,随着技术的发展和应用场景的变化,JSON数据转换为数据库表格式的方法不断演进,无论是通过增强传统关系型数据库的功能,还是借助NoSQL数据库的优势,都在推动着更高效、便捷的数据处理方式的创新与发展。
2023-11-04 08:47:08
443
算法侠
转载文章
...设置用来表达地区间的层级关系,如北京市(id=2)是东城区(id=3)的父级地区,通过pid将它们关联起来。 Unicode编码 (Unicode) , Unicode是一种国际标准字符集,用于统一和涵盖全球所有语言文字的编码方案。在SQL语句中,name字段使用了utf8_unicode_ci编码,这意味着存储在该字段中的地区名称支持Unicode编码,能够正确处理中文字符以及其他多种语言的文字信息,确保全国地址数据的多语言兼容性和准确性。 自增主键 (Auto-increment Primary Key) , 在数据库表结构中,自增主键是一种特殊的主键约束,它的特点是每次插入新记录时,主键字段的值会自动递增。在com_area表中,id字段被定义为自增主键,意味着当向表中插入新的地区记录时,系统会自动为该记录分配一个唯一的、大于已有记录主键值的新ID,简化了数据插入操作,同时保证了主键字段的唯一性,有助于维护数据的一致性和完整性。
2023-06-30 09:11:08
62
转载
MySQL
...地将无限极分类转换为层级结构呢? 二、为什么要使用无限极分类? 首先,我们需要了解一下什么是无限极分类。无限极分类就像一棵大树,它的构造挺有趣。在这样的树形结构中,每一个小节点都有一个自己的‘老爹’节点,而这个‘老爹’呢,它还可能是其他许多小节点的‘老爹’。这样的构造方式,其实就像家谱一样,可以展示出各种级别的层次关系。比如说在商品分类里,就有爷爷辈的大类别、爸爸辈的中类别、儿子辈的小类别,甚至还有孙子辈的更细分的类别呢! 其次,无限极分类的优点在于它可以方便地进行扩展。假如我们想要新增一个类别,就像在家族树上添个新枝丫一样简单,你只需要在它的“老爸”类别下加一个新的“小子类别”,这样一来,数据的一致性和完整性就能轻轻松松地保持住啦! 三、什么是递归? 那么,如何使用递归来处理无限极分类呢?这就需要用到递归的概念。递归啊,就是那种函数自己调用自己的神奇操作。你想象一下,这个函数有点像一个超级有耐心的小助手,一遍又一遍地做着同一件事情,但每次做的时候都比上次更进一步。通过这种自我迭代的过程,我们竟然能解开很多看起来超级复杂、让人挠头的问题呢! 在处理无限极分类时,我们可以使用递归的方式,从根节点开始,一层一层地遍历下去,直到找到所有的叶子节点。然后,我们可以根据每层的节点,构建出相应的层级结构。 四、如何使用递归来处理无限极分类? 接下来,我们来看一下如何使用递归来处理无限极分类。假设我们有一个无限极分类的数据库表,其中包含id、parent_id和name三个字段。喏,你听我说哈,id呢,就相当于每个小节点的身份证号,是独一无二的。而parent_id呢,顾名思义,就是每个小节点它爹——父节点的身份证号啦。至于name嘛,简单易懂,那就是给每个小节点起的专属昵称哈! 我们可以定义一个函数,输入参数是一个父节点的id,输出是一个层级结构的数组。具体操作如下: php function getTree($id){ $sql = "SELECT FROM node WHERE parent_id = '$id'"; $result = mysqli_query($conn, $sql); $arr = array(); while($row = mysqli_fetch_assoc($result)){ $arr[] = $row; } foreach($arr as $value){ if($value['child'] > 0){ $arr = array_merge($arr, getTree($value['id'])); } } return $arr; } 以上就是使用递归来处理无限极分类的一个简单示例。这个例子嘛,我们先从某个特定的老爸节点下手,把它的所有小崽子(子节点)都给挖出来。接着呢,对每一个小崽子,如果它们自己还有更下一代的小崽子,那我们就得像孙悟空钻进葫芦娃的肚子里那样,一层层地往里递归调用这个过程,把那些隐藏更深的孙子辈节点也给找全了。最后呢,咱们把这一大家子所有的节点都聚到一块儿,拼成一个完整的、层层分明的家族结构。 然而,递归虽然强大,但也有它的局限性。当数据量大时,递归可能会导致栈溢出,影响程序的执行效率。因此,我们需要寻找其他的解决方案。 五、不使用递归,如何处理无限极分类? 那么,如果不使用递归,我们该如何处理无限极分类呢?答案就是使用非递归的方式,也就是我们常说的迭代法。 迭代法的基本思想是从根节点开始,每次只处理一层数据,直到处理完所有的数据。这种方法压根儿不需要递归调用,所以你完全不用担心什么栈溢出的问题。而且实话跟你说,通常情况下,它的工作效率要比递归高不少! 接下来,我们来看一下如何使用迭代法处理无限极分类。假设我们已经有了一个无限极分类的数据库表,其中包含id、parent_id和name三个字段。我们可以按照以下步骤进行处理: 1. 创建一个空的层级结构数组,用于存储所有的节点; 2. 获取根节点,将其添加到层级结构数组中; 3. 遍历所有的节点,对于每一个节点,如果它还没有被处理过,则对其进行处理,将其添加到层级结构数组中,然后处理它的所有子节点。 具体的代码实现如下: php function getTree($root){ $tree = array(); $queue = array($root); while(count($queue) > 0){ $node = array_shift($queue); $tree[$node['id']] = array( 'id' => $node['id'], 'parent_id' => $node['parent_id'], 'name' => $node['name'], 'children' => array() ); if($node['child'] > 0){ $queue = array_merge($queue, getChildren($conn, $node['id'])); } } return $tree; } function getChildren($conn, $id){ $sql = "SELECT FROM node WHERE parent_id = '$id'"; $result = mysqli_query($conn, $sql); $arr = array(); while($row = mysqli_fetch_assoc($result)){ $arr[] = $row; } return $arr; } 以上就是在非递归的情况下,处理无限极分类的一个简单示例。在举这个例子的时候,我们首先动手整了个空荡荡的层级结构数组出来,接着找准了那个根节点,把它给塞进了这个层级结构数组里头。然后,我们就像在超市排队结账一样,用一个队列来装那些等待被处理的节点。每当轮到一个节点时,我们就把它从队列里拽出来,塞进层级结构数组这个大篮子里,并且仔仔细细地处理它所有的“孩子”——也就是子节点。最后一步,咱们就像玩接龙游戏一样,把已经处理过的节点从队列里拿出来,然后美滋滋地接着处理下一个排着队的节点,就这么一直玩下去,直到队列里一个节点都不剩,就表示大功告成了! 总结来说,无论是使用递归还是非递归,都可以有效地处理无限极分类。但是,不同的方法适用于不同的场景,我们需要根据实际情况选择合适的方法。
2023-08-24 16:14:06
58
星河万里_t
JQuery插件下载
...别适用于需要展示复杂层级结构数据的场景。这款插件不仅具有强大的功能,而且非常易于使用和扩展。它能够轻松地与各种不同的主题配合使用,让您的网站或应用界面更加美观。jstree支持从HTML和JSON格式的数据源加载内容,使得数据管理变得更加便捷。此外,它还具备异步回调数据的功能,这意味着您可以动态地加载大量数据而不会影响页面性能。jstree的一个显著优势在于其对旧版浏览器的支持,比如IE8,这使得更多的用户群体能够无障碍地访问您的网站或应用。无论您是在构建文件管理系统,还是在开发复杂的组织架构图,jstree都能提供必要的工具来实现这一目标。它支持多级树结构,可以轻松处理从简单到复杂的各种层级关系,满足了不同项目的需求。总之,jstree凭借其易用性、可扩展性和广泛的功能集,成为了一款不可多得的jQuery目录树插件。无论是前端开发者还是设计师,都可以借助jstree快速创建出美观且功能丰富的目录树界面。 点我下载 文件大小:887.95 KB 您将下载一个JQuery插件资源包,该资源包内部文件的目录结构如下: 本网站提供JQuery插件下载功能,旨在帮助广大用户在工作学习中提升效率、节约时间。 本网站的下载内容来自于互联网。如您发现任何侵犯您权益的内容,请立即告知我们,我们将迅速响应并删除相关内容。 免责声明:站内所有资源仅供个人学习研究及参考之用,严禁将这些资源应用于商业场景。 若擅自商用导致的一切后果,由使用者承担责任。
2025-02-19 11:29:37
67
本站
转载文章
...到持久化系统中(MySQL) 广告点击系统实时分析的意义:因为可以在线实时的看见广告的投放效果,就为广告的更大规模的投入和调整打下了坚实的基础,从而为公司带来最大化的经济回报。 核心需求: 1、实时黑名单动态过滤出有效的用户广告点击行为:因为黑名单用户可能随时出现,所以需要动态更新; 2、在线计算广告点击流量; 3、Top3热门广告; 4、每个广告流量趋势; 5、广告点击用户的区域分布分析 6、最近一分钟的广告点击量; 7、整个广告点击Spark Streaming处理程序724小时运行; 数据格式: 时间、用户、广告、城市等 技术细节: 在线计算用户点击的次数分析,屏蔽IP等; 使用updateStateByKey或者mapWithState进行不同地区广告点击排名的计算; Spark Streaming+Spark SQL+Spark Core等综合分析数据; 使用Window类型的操作; 高可用和性能调优等等; 流量趋势,一般会结合DB等; Spark Core / /package com.tom.spark.SparkApps.sparkstreaming;import java.util.Date;import java.util.HashMap;import java.util.Map;import java.util.Properties;import java.util.Random;import kafka.javaapi.producer.Producer;import kafka.producer.KeyedMessage;import kafka.producer.ProducerConfig;/ 数据生成代码,Kafka Producer产生数据/public class MockAdClickedStat {/ @param args/public static void main(String[] args) {final Random random = new Random();final String[] provinces = new String[]{"Guangdong", "Zhejiang", "Jiangsu", "Fujian"};final Map<String, String[]> cities = new HashMap<String, String[]>();cities.put("Guangdong", new String[]{"Guangzhou", "Shenzhen", "Dongguan"});cities.put("Zhejiang", new String[]{"Hangzhou", "Wenzhou", "Ningbo"});cities.put("Jiangsu", new String[]{"Nanjing", "Suzhou", "Wuxi"});cities.put("Fujian", new String[]{"Fuzhou", "Xiamen", "Sanming"});final String[] ips = new String[] {"192.168.112.240","192.168.112.239","192.168.112.245","192.168.112.246","192.168.112.247","192.168.112.248","192.168.112.249","192.168.112.250","192.168.112.251","192.168.112.252","192.168.112.253","192.168.112.254",};/ Kafka相关的基本配置信息/Properties kafkaConf = new Properties();kafkaConf.put("serializer.class", "kafka.serializer.StringEncoder");kafkaConf.put("metadeta.broker.list", "Master:9092,Worker1:9092,Worker2:9092");ProducerConfig producerConfig = new ProducerConfig(kafkaConf);final Producer<Integer, String> producer = new Producer<Integer, String>(producerConfig);new Thread(new Runnable() {public void run() {while(true) {//在线处理广告点击流的基本数据格式:timestamp、ip、userID、adID、province、cityLong timestamp = new Date().getTime();String ip = ips[random.nextInt(12)]; //可以采用网络上免费提供的ip库int userID = random.nextInt(10000);int adID = random.nextInt(100);String province = provinces[random.nextInt(4)];String city = cities.get(province)[random.nextInt(3)];String clickedAd = timestamp + "\t" + ip + "\t" + userID + "\t" + adID + "\t" + province + "\t" + city;producer.send(new KeyedMessage<Integer, String>("AdClicked", clickedAd));try {Thread.sleep(50);} catch (InterruptedException e) {// TODO Auto-generated catch blocke.printStackTrace();} }} }).start();} } package com.tom.spark.SparkApps.sparkstreaming;import java.sql.Connection;import java.sql.DriverManager;import java.sql.PreparedStatement;import java.sql.ResultSet;import java.sql.SQLException;import java.util.ArrayList;import java.util.Arrays;import java.util.HashMap;import java.util.HashSet;import java.util.Iterator;import java.util.List;import java.util.Map;import java.util.Set;import java.util.concurrent.LinkedBlockingQueue;import kafka.serializer.StringDecoder;import org.apache.spark.SparkConf;import org.apache.spark.api.java.JavaPairRDD;import org.apache.spark.api.java.JavaRDD;import org.apache.spark.api.java.JavaSparkContext;import org.apache.spark.api.java.function.Function;import org.apache.spark.api.java.function.Function2;import org.apache.spark.api.java.function.PairFunction;import org.apache.spark.api.java.function.VoidFunction;import org.apache.spark.sql.DataFrame;import org.apache.spark.sql.Row;import org.apache.spark.sql.RowFactory;import org.apache.spark.sql.hive.HiveContext;import org.apache.spark.sql.types.DataTypes;import org.apache.spark.sql.types.StructType;import org.apache.spark.streaming.Durations;import org.apache.spark.streaming.api.java.JavaDStream;import org.apache.spark.streaming.api.java.JavaPairDStream;import org.apache.spark.streaming.api.java.JavaPairInputDStream;import org.apache.spark.streaming.api.java.JavaStreamingContext;import org.apache.spark.streaming.api.java.JavaStreamingContextFactory;import org.apache.spark.streaming.kafka.KafkaUtils;import com.google.common.base.Optional;import scala.Tuple2;/ 数据处理,Kafka消费者/public class AdClickedStreamingStats {/ @param args/public static void main(String[] args) {// TODO Auto-generated method stub//好处:1、checkpoint 2、工厂final SparkConf conf = new SparkConf().setAppName("SparkStreamingOnKafkaDirect").setMaster("hdfs://Master:7077/");final String checkpointDirectory = "hdfs://Master:9000/library/SparkStreaming/CheckPoint_Data";JavaStreamingContextFactory factory = new JavaStreamingContextFactory() {public JavaStreamingContext create() {// TODO Auto-generated method stubreturn createContext(checkpointDirectory, conf);} };/ 可以从失败中恢复Driver,不过还需要指定Driver这个进程运行在Cluster,并且在提交应用程序的时候制定--supervise;/JavaStreamingContext javassc = JavaStreamingContext.getOrCreate(checkpointDirectory, factory);/ 第三步:创建Spark Streaming输入数据来源input Stream: 1、数据输入来源可以基于File、HDFS、Flume、Kafka、Socket等 2、在这里我们指定数据来源于网络Socket端口,Spark Streaming连接上该端口并在运行的时候一直监听该端口的数据 (当然该端口服务首先必须存在),并且在后续会根据业务需要不断有数据产生(当然对于Spark Streaming 应用程序的运行而言,有无数据其处理流程都是一样的) 3、如果经常在每间隔5秒钟没有数据的话不断启动空的Job其实会造成调度资源的浪费,因为并没有数据需要发生计算;所以 实际的企业级生成环境的代码在具体提交Job前会判断是否有数据,如果没有的话就不再提交Job;///创建Kafka元数据来让Spark Streaming这个Kafka Consumer利用Map<String, String> kafkaParameters = new HashMap<String, String>();kafkaParameters.put("metadata.broker.list", "Master:9092,Worker1:9092,Worker2:9092");Set<String> topics = new HashSet<String>();topics.add("SparkStreamingDirected");JavaPairInputDStream<String, String> adClickedStreaming = KafkaUtils.createDirectStream(javassc, String.class, String.class, StringDecoder.class, StringDecoder.class,kafkaParameters, topics);/因为要对黑名单进行过滤,而数据是在RDD中的,所以必然使用transform这个函数; 但是在这里我们必须使用transformToPair,原因是读取进来的Kafka的数据是Pair<String,String>类型, 另一个原因是过滤后的数据要进行进一步处理,所以必须是读进的Kafka数据的原始类型 在此再次说明,每个Batch Duration中实际上讲输入的数据就是被一个且仅被一个RDD封装的,你可以有多个 InputDStream,但其实在产生job的时候,这些不同的InputDStream在Batch Duration中就相当于Spark基于HDFS 数据操作的不同文件来源而已罢了。/JavaPairDStream<String, String> filteredadClickedStreaming = adClickedStreaming.transformToPair(new Function<JavaPairRDD<String,String>, JavaPairRDD<String,String>>() {public JavaPairRDD<String, String> call(JavaPairRDD<String, String> rdd) throws Exception {/ 在线黑名单过滤思路步骤: 1、从数据库中获取黑名单转换成RDD,即新的RDD实例封装黑名单数据; 2、然后把代表黑名单的RDD的实例和Batch Duration产生的RDD进行Join操作, 准确的说是进行leftOuterJoin操作,也就是说使用Batch Duration产生的RDD和代表黑名单的RDD实例进行 leftOuterJoin操作,如果两者都有内容的话,就会是true,否则的话就是false 我们要留下的是leftOuterJoin结果为false; /final List<String> blackListNames = new ArrayList<String>();JDBCWrapper jdbcWrapper = JDBCWrapper.getJDBCInstance();jdbcWrapper.doQuery("SELECT FROM blacklisttable", null, new ExecuteCallBack() {public void resultCallBack(ResultSet result) throws Exception {while(result.next()){blackListNames.add(result.getString(1));} }});List<Tuple2<String, Boolean>> blackListTuple = new ArrayList<Tuple2<String,Boolean>>();for(String name : blackListNames) {blackListTuple.add(new Tuple2<String, Boolean>(name, true));}List<Tuple2<String, Boolean>> blacklistFromListDB = blackListTuple; //数据来自于查询的黑名单表并且映射成为<String, Boolean>JavaSparkContext jsc = new JavaSparkContext(rdd.context());/ 黑名单的表中只有userID,但是如果要进行join操作的话就必须是Key-Value,所以在这里我们需要 基于数据表中的数据产生Key-Value类型的数据集合/JavaPairRDD<String, Boolean> blackListRDD = jsc.parallelizePairs(blacklistFromListDB);/ 进行操作的时候肯定是基于userID进行join,所以必须把传入的rdd进行mapToPair操作转化成为符合格式的RDD/JavaPairRDD<String, Tuple2<String, String>> rdd2Pair = rdd.mapToPair(new PairFunction<Tuple2<String,String>, String, Tuple2<String, String>>() {public Tuple2<String, Tuple2<String, String>> call(Tuple2<String, String> t) throws Exception {// TODO Auto-generated method stubString userID = t._2.split("\t")[2];return new Tuple2<String, Tuple2<String,String>>(userID, t);} });JavaPairRDD<String, Tuple2<Tuple2<String, String>, Optional<Boolean>>> joined = rdd2Pair.leftOuterJoin(blackListRDD);JavaPairRDD<String, String> result = joined.filter(new Function<Tuple2<String,Tuple2<Tuple2<String,String>,Optional<Boolean>>>, Boolean>() {public Boolean call(Tuple2<String, Tuple2<Tuple2<String, String>, Optional<Boolean>>> tuple)throws Exception {// TODO Auto-generated method stubOptional<Boolean> optional = tuple._2._2;if(optional.isPresent() && optional.get()){return false;} else {return true;} }}).mapToPair(new PairFunction<Tuple2<String,Tuple2<Tuple2<String,String>,Optional<Boolean>>>, String, String>() {public Tuple2<String, String> call(Tuple2<String, Tuple2<Tuple2<String, String>, Optional<Boolean>>> t)throws Exception {// TODO Auto-generated method stubreturn t._2._1;} });return result;} });//广告点击的基本数据格式:timestamp、ip、userID、adID、province、cityJavaPairDStream<String, Long> pairs = filteredadClickedStreaming.mapToPair(new PairFunction<Tuple2<String,String>, String, Long>() {public Tuple2<String, Long> call(Tuple2<String, String> t) throws Exception {String[] splited=t._2.split("\t");String timestamp = splited[0]; //YYYY-MM-DDString ip = splited[1];String userID = splited[2];String adID = splited[3];String province = splited[4];String city = splited[5]; String clickedRecord = timestamp + "_" +ip + "_"+userID+"_"+adID+"_"+province +"_"+city;return new Tuple2<String, Long>(clickedRecord, 1L);} });/ 第4.3步:在单词实例计数为1基础上,统计每个单词在文件中出现的总次数/JavaPairDStream<String, Long> adClickedUsers= pairs.reduceByKey(new Function2<Long, Long, Long>() {public Long call(Long i1, Long i2) throws Exception{return i1 + i2;} });/判断有效的点击,复杂化的采用机器学习训练模型进行在线过滤 简单的根据ip判断1天不超过100次;也可以通过一个batch duration的点击次数判断是否非法广告点击,通过一个batch来判断是不完整的,还需要一天的数据也可以每一个小时来判断。/JavaPairDStream<String, Long> filterClickedBatch = adClickedUsers.filter(new Function<Tuple2<String,Long>, Boolean>() {public Boolean call(Tuple2<String, Long> v1) throws Exception {if (1 < v1._2){//更新一些黑名单的数据库表return false;} else { return true;} }});//filterClickedBatch.print();//写入数据库filterClickedBatch.foreachRDD(new Function<JavaPairRDD<String,Long>, Void>() {public Void call(JavaPairRDD<String, Long> rdd) throws Exception {rdd.foreachPartition(new VoidFunction<Iterator<Tuple2<String,Long>>>() {public void call(Iterator<Tuple2<String, Long>> partition) throws Exception {//使用数据库连接池的高效读写数据库的方式将数据写入数据库mysql//例如一次插入 1000条 records,使用insertBatch 或 updateBatch//插入的用户数据信息:userID,adID,clickedCount,time//这里面有一个问题,可能出现两条记录的key是一样的,此时需要更新累加操作List<UserAdClicked> userAdClickedList = new ArrayList<UserAdClicked>();while(partition.hasNext()) {Tuple2<String, Long> record = partition.next();String[] splited = record._1.split("\t");UserAdClicked userClicked = new UserAdClicked();userClicked.setTimestamp(splited[0]);userClicked.setIp(splited[1]);userClicked.setUserID(splited[2]);userClicked.setAdID(splited[3]);userClicked.setProvince(splited[4]);userClicked.setCity(splited[5]);userAdClickedList.add(userClicked);}final List<UserAdClicked> inserting = new ArrayList<UserAdClicked>();final List<UserAdClicked> updating = new ArrayList<UserAdClicked>();JDBCWrapper jdbcWrapper = JDBCWrapper.getJDBCInstance();//表的字段timestamp、ip、userID、adID、province、city、clickedCountfor(final UserAdClicked clicked : userAdClickedList) {jdbcWrapper.doQuery("SELECT clickedCount FROM adclicked WHERE"+ " timestamp =? AND userID = ? AND adID = ?",new Object[]{clicked.getTimestamp(), clicked.getUserID(),clicked.getAdID()}, new ExecuteCallBack() {public void resultCallBack(ResultSet result) throws Exception {// TODO Auto-generated method stubif(result.next()) {long count = result.getLong(1);clicked.setClickedCount(count);updating.add(clicked);} else {inserting.add(clicked);clicked.setClickedCount(1L);} }});}//表的字段timestamp、ip、userID、adID、province、city、clickedCountList<Object[]> insertParametersList = new ArrayList<Object[]>();for(UserAdClicked insertRecord : inserting) {insertParametersList.add(new Object[] {insertRecord.getTimestamp(),insertRecord.getIp(),insertRecord.getUserID(),insertRecord.getAdID(),insertRecord.getProvince(),insertRecord.getCity(),insertRecord.getClickedCount()});}jdbcWrapper.doBatch("INSERT INTO adclicked VALUES(?, ?, ?, ?, ?, ?, ?)", insertParametersList);//表的字段timestamp、ip、userID、adID、province、city、clickedCountList<Object[]> updateParametersList = new ArrayList<Object[]>();for(UserAdClicked updateRecord : updating) {updateParametersList.add(new Object[] {updateRecord.getTimestamp(),updateRecord.getIp(),updateRecord.getUserID(),updateRecord.getAdID(),updateRecord.getProvince(),updateRecord.getCity(),updateRecord.getClickedCount() + 1});}jdbcWrapper.doBatch("UPDATE adclicked SET clickedCount = ? WHERE"+ " timestamp =? AND ip = ? AND userID = ? AND adID = ? "+ "AND province = ? AND city = ?", updateParametersList);} });return null;} });//再次过滤,从数据库中读取数据过滤黑名单JavaPairDStream<String, Long> blackListBasedOnHistory = filterClickedBatch.filter(new Function<Tuple2<String,Long>, Boolean>() {public Boolean call(Tuple2<String, Long> v1) throws Exception {//广告点击的基本数据格式:timestamp,ip,userID,adID,province,cityString[] splited = v1._1.split("\t"); //提取key值String date =splited[0];String userID =splited[2];String adID =splited[3];//查询一下数据库同一个用户同一个广告id点击量超过50次列入黑名单//接下来 根据date、userID、adID条件去查询用户点击广告的数据表,获得总的点击次数//这个时候基于点击次数判断是否属于黑名单点击int clickedCountTotalToday = 81 ;if (clickedCountTotalToday > 50) {return true;}else {return false ;} }});//map操作,找出用户的idJavaDStream<String> blackListuserIDBasedInBatchOnhistroy =blackListBasedOnHistory.map(new Function<Tuple2<String,Long>, String>() {public String call(Tuple2<String, Long> v1) throws Exception {// TODO Auto-generated method stubreturn v1._1.split("\t")[2];} });//有一个问题,数据可能重复,在一个partition里面重复,这个好办;//但多个partition不能保证一个用户重复,需要对黑名单的整个rdd进行去重操作。//rdd去重了,partition也就去重了,一石二鸟,一箭双雕// 找出了黑名单,下一步就写入黑名单数据库表中JavaDStream<String> blackListUniqueuserBasedInBatchOnhistroy = blackListuserIDBasedInBatchOnhistroy.transform(new Function<JavaRDD<String>, JavaRDD<String>>() {public JavaRDD<String> call(JavaRDD<String> rdd) throws Exception {// TODO Auto-generated method stubreturn rdd.distinct();} });// 下一步写入到数据表中blackListUniqueuserBasedInBatchOnhistroy.foreachRDD(new Function<JavaRDD<String>, Void>() {public Void call(JavaRDD<String> rdd) throws Exception {rdd.foreachPartition(new VoidFunction<Iterator<String>>() {public void call(Iterator<String> t) throws Exception {// TODO Auto-generated method stub//插入的用户信息可以只包含:useID//此时直接插入黑名单数据表即可。//写入数据库List<Object[]> blackList = new ArrayList<Object[]>();while(t.hasNext()) {blackList.add(new Object[]{t.next()});}JDBCWrapper jdbcWrapper = JDBCWrapper.getJDBCInstance();jdbcWrapper.doBatch("INSERT INTO blacklisttable values (?)", blackList);} });return null;} });/广告点击累计动态更新,每个updateStateByKey都会在Batch Duration的时间间隔的基础上进行广告点击次数的更新, 更新之后我们一般都会持久化到外部存储设备上,在这里我们存储到MySQL数据库中/JavaPairDStream<String, Long> updateStateByKeyDSteam = filteredadClickedStreaming.mapToPair(new PairFunction<Tuple2<String,String>, String, Long>() {public Tuple2<String, Long> call(Tuple2<String, String> t)throws Exception {String[] splited=t._2.split("\t");String timestamp = splited[0]; //YYYY-MM-DDString ip = splited[1];String userID = splited[2];String adID = splited[3];String province = splited[4];String city = splited[5]; String clickedRecord = timestamp + "_" +ip + "_"+userID+"_"+adID+"_"+province +"_"+city;return new Tuple2<String, Long>(clickedRecord, 1L);} }).updateStateByKey(new Function2<List<Long>, Optional<Long>, Optional<Long>>() {public Optional<Long> call(List<Long> v1, Optional<Long> v2)throws Exception {// v1:当前的Key在当前的Batch Duration中出现的次数的集合,例如{1,1,1,。。。,1}// v2:当前的Key在以前的Batch Duration中积累下来的结果;Long clickedTotalHistory = 0L; if(v2.isPresent()){clickedTotalHistory = v2.get();}for(Long one : v1) {clickedTotalHistory += one;}return Optional.of(clickedTotalHistory);} });updateStateByKeyDSteam.foreachRDD(new Function<JavaPairRDD<String,Long>, Void>() {public Void call(JavaPairRDD<String, Long> rdd) throws Exception {rdd.foreachPartition(new VoidFunction<Iterator<Tuple2<String,Long>>>() {public void call(Iterator<Tuple2<String, Long>> partition) throws Exception {//使用数据库连接池的高效读写数据库的方式将数据写入数据库mysql//例如一次插入 1000条 records,使用insertBatch 或 updateBatch//插入的用户数据信息:timestamp、adID、province、city//这里面有一个问题,可能出现两条记录的key是一样的,此时需要更新累加操作List<AdClicked> AdClickedList = new ArrayList<AdClicked>();while(partition.hasNext()) {Tuple2<String, Long> record = partition.next();String[] splited = record._1.split("\t");AdClicked adClicked = new AdClicked();adClicked.setTimestamp(splited[0]);adClicked.setAdID(splited[1]);adClicked.setProvince(splited[2]);adClicked.setCity(splited[3]);adClicked.setClickedCount(record._2);AdClickedList.add(adClicked);}final List<AdClicked> inserting = new ArrayList<AdClicked>();final List<AdClicked> updating = new ArrayList<AdClicked>();JDBCWrapper jdbcWrapper = JDBCWrapper.getJDBCInstance();//表的字段timestamp、ip、userID、adID、province、city、clickedCountfor(final AdClicked clicked : AdClickedList) {jdbcWrapper.doQuery("SELECT clickedCount FROM adclickedcount WHERE"+ " timestamp = ? AND adID = ? AND province = ? AND city = ?",new Object[]{clicked.getTimestamp(), clicked.getAdID(),clicked.getProvince(), clicked.getCity()}, new ExecuteCallBack() {public void resultCallBack(ResultSet result) throws Exception {// TODO Auto-generated method stubif(result.next()) {long count = result.getLong(1);clicked.setClickedCount(count);updating.add(clicked);} else {inserting.add(clicked);clicked.setClickedCount(1L);} }});}//表的字段timestamp、ip、userID、adID、province、city、clickedCountList<Object[]> insertParametersList = new ArrayList<Object[]>();for(AdClicked insertRecord : inserting) {insertParametersList.add(new Object[] {insertRecord.getTimestamp(),insertRecord.getAdID(),insertRecord.getProvince(),insertRecord.getCity(),insertRecord.getClickedCount()});}jdbcWrapper.doBatch("INSERT INTO adclickedcount VALUES(?, ?, ?, ?, ?)", insertParametersList);//表的字段timestamp、ip、userID、adID、province、city、clickedCountList<Object[]> updateParametersList = new ArrayList<Object[]>();for(AdClicked updateRecord : updating) {updateParametersList.add(new Object[] {updateRecord.getClickedCount(),updateRecord.getTimestamp(),updateRecord.getAdID(),updateRecord.getProvince(),updateRecord.getCity()});}jdbcWrapper.doBatch("UPDATE adclickedcount SET clickedCount = ? WHERE"+ " timestamp =? AND adID = ? AND province = ? AND city = ?", updateParametersList);} });return null;} });/ 对广告点击进行TopN计算,计算出每天每个省份Top5排名的广告 因为我们直接对RDD进行操作,所以使用了transfomr算子;/updateStateByKeyDSteam.transform(new Function<JavaPairRDD<String,Long>, JavaRDD<Row>>() {public JavaRDD<Row> call(JavaPairRDD<String, Long> rdd) throws Exception {JavaRDD<Row> rowRDD = rdd.mapToPair(new PairFunction<Tuple2<String,Long>, String, Long>() {public Tuple2<String, Long> call(Tuple2<String, Long> t)throws Exception {// TODO Auto-generated method stubString[] splited=t._1.split("_");String timestamp = splited[0]; //YYYY-MM-DDString adID = splited[3];String province = splited[4];String clickedRecord = timestamp + "_" + adID + "_" + province;return new Tuple2<String, Long>(clickedRecord, t._2);} }).reduceByKey(new Function2<Long, Long, Long>() {public Long call(Long v1, Long v2) throws Exception {// TODO Auto-generated method stubreturn v1 + v2;} }).map(new Function<Tuple2<String,Long>, Row>() {public Row call(Tuple2<String, Long> v1) throws Exception {// TODO Auto-generated method stubString[] splited=v1._1.split("_");String timestamp = splited[0]; //YYYY-MM-DDString adID = splited[3];String province = splited[4];return RowFactory.create(timestamp, adID, province, v1._2);} });StructType structType = DataTypes.createStructType(Arrays.asList(DataTypes.createStructField("timestamp", DataTypes.StringType, true),DataTypes.createStructField("adID", DataTypes.StringType, true),DataTypes.createStructField("province", DataTypes.StringType, true),DataTypes.createStructField("clickedCount", DataTypes.LongType, true)));HiveContext hiveContext = new HiveContext(rdd.context());DataFrame df = hiveContext.createDataFrame(rowRDD, structType);df.registerTempTable("topNTableSource");DataFrame result = hiveContext.sql("SELECT timestamp, adID, province, clickedCount, FROM"+ " (SELECT timestamp, adID, province,clickedCount, "+ "ROW_NUMBER() OVER(PARTITION BY province ORDER BY clickeCount DESC) rank "+ "FROM topNTableSource) subquery "+ "WHERE rank <= 5");return result.toJavaRDD();} }).foreachRDD(new Function<JavaRDD<Row>, Void>() {public Void call(JavaRDD<Row> rdd) throws Exception {// TODO Auto-generated method stubrdd.foreachPartition(new VoidFunction<Iterator<Row>>() {public void call(Iterator<Row> t) throws Exception {// TODO Auto-generated method stubList<AdProvinceTopN> adProvinceTopN = new ArrayList<AdProvinceTopN>();while(t.hasNext()) {Row row = t.next();AdProvinceTopN item = new AdProvinceTopN();item.setTimestamp(row.getString(0));item.setAdID(row.getString(1));item.setProvince(row.getString(2));item.setClickedCount(row.getLong(3));adProvinceTopN.add(item);}// final List<AdProvinceTopN> inserting = new ArrayList<AdProvinceTopN>();// final List<AdProvinceTopN> updating = new ArrayList<AdProvinceTopN>();JDBCWrapper jdbcWrapper = JDBCWrapper.getJDBCInstance();Set<String> set = new HashSet<String>();for(AdProvinceTopN item: adProvinceTopN){set.add(item.getTimestamp() + "_" + item.getProvince());}//表的字段timestamp、adID、province、clickedCountArrayList<Object[]> deleteParametersList = new ArrayList<Object[]>();for(String deleteRecord : set) {String[] splited = deleteRecord.split("_");deleteParametersList.add(new Object[]{splited[0],splited[1]});}jdbcWrapper.doBatch("DELETE FROM adprovincetopn WHERE timestamp = ? AND province = ?", deleteParametersList);//表的字段timestamp、ip、userID、adID、province、city、clickedCountList<Object[]> insertParametersList = new ArrayList<Object[]>();for(AdProvinceTopN insertRecord : adProvinceTopN) {insertParametersList.add(new Object[] {insertRecord.getClickedCount(),insertRecord.getTimestamp(),insertRecord.getAdID(),insertRecord.getProvince()});}jdbcWrapper.doBatch("INSERT INTO adprovincetopn VALUES (?, ?, ?, ?)", insertParametersList);} });return null;} });/ 计算过去半个小时内广告点击的趋势 广告点击的基本数据格式:timestamp、ip、userID、adID、province、city/filteredadClickedStreaming.mapToPair(new PairFunction<Tuple2<String,String>, String, Long>() {public Tuple2<String, Long> call(Tuple2<String, String> t)throws Exception {String splited[] = t._2.split("\t");String adID = splited[3];String time = splited[0]; //Todo:后续需要重构代码实现时间戳和分钟的转换提取。此处需要提取出该广告的点击分钟单位return new Tuple2<String, Long>(time + "_" + adID, 1L);} }).reduceByKeyAndWindow(new Function2<Long, Long, Long>() {public Long call(Long v1, Long v2) throws Exception {// TODO Auto-generated method stubreturn v1 + v2;} }, new Function2<Long, Long, Long>() {public Long call(Long v1, Long v2) throws Exception {// TODO Auto-generated method stubreturn v1 - v2;} }, Durations.minutes(30), Durations.milliseconds(5)).foreachRDD(new Function<JavaPairRDD<String,Long>, Void>() {public Void call(JavaPairRDD<String, Long> rdd) throws Exception {// TODO Auto-generated method stubrdd.foreachPartition(new VoidFunction<Iterator<Tuple2<String,Long>>>() {public void call(Iterator<Tuple2<String, Long>> partition)throws Exception {List<AdTrendStat> adTrend = new ArrayList<AdTrendStat>();// TODO Auto-generated method stubwhile(partition.hasNext()) {Tuple2<String, Long> record = partition.next();String[] splited = record._1.split("_");String time = splited[0];String adID = splited[1];Long clickedCount = record._2;/ 在插入数据到数据库的时候具体需要哪些字段?time、adID、clickedCount; 而我们通过J2EE技术进行趋势绘图的时候肯定是需要年、月、日、时、分这个维度的,所以我们在这里需要 年月日、小时、分钟这些时间维度;/AdTrendStat adTrendStat = new AdTrendStat();adTrendStat.setAdID(adID);adTrendStat.setClickedCount(clickedCount);adTrendStat.set_date(time); //Todo:获取年月日adTrendStat.set_hour(time); //Todo:获取小时adTrendStat.set_minute(time);//Todo:获取分钟adTrend.add(adTrendStat);}final List<AdTrendStat> inserting = new ArrayList<AdTrendStat>();final List<AdTrendStat> updating = new ArrayList<AdTrendStat>();JDBCWrapper jdbcWrapper = JDBCWrapper.getJDBCInstance();//表的字段timestamp、ip、userID、adID、province、city、clickedCountfor(final AdTrendStat trend : adTrend) {final AdTrendCountHistory adTrendhistory = new AdTrendCountHistory();jdbcWrapper.doQuery("SELECT clickedCount FROM adclickedtrend WHERE"+ " date =? AND hour = ? AND minute = ? AND AdID = ?",new Object[]{trend.get_date(), trend.get_hour(), trend.get_minute(),trend.getAdID()}, new ExecuteCallBack() {public void resultCallBack(ResultSet result) throws Exception {// TODO Auto-generated method stubif(result.next()) {long count = result.getLong(1);adTrendhistory.setClickedCountHistoryLong(count);updating.add(trend);} else { inserting.add(trend);} }});}//表的字段date、hour、minute、adID、clickedCountList<Object[]> insertParametersList = new ArrayList<Object[]>();for(AdTrendStat insertRecord : inserting) {insertParametersList.add(new Object[] {insertRecord.get_date(),insertRecord.get_hour(),insertRecord.get_minute(),insertRecord.getAdID(),insertRecord.getClickedCount()});}jdbcWrapper.doBatch("INSERT INTO adclickedtrend VALUES(?, ?, ?, ?, ?)", insertParametersList);//表的字段date、hour、minute、adID、clickedCountList<Object[]> updateParametersList = new ArrayList<Object[]>();for(AdTrendStat updateRecord : updating) {updateParametersList.add(new Object[] {updateRecord.getClickedCount(),updateRecord.get_date(),updateRecord.get_hour(),updateRecord.get_minute(),updateRecord.getAdID()});}jdbcWrapper.doBatch("UPDATE adclickedtrend SET clickedCount = ? WHERE"+ " date =? AND hour = ? AND minute = ? AND AdID = ?", updateParametersList);} });return null;} });;/ Spark Streaming 执行引擎也就是Driver开始运行,Driver启动的时候是位于一条新的线程中的,当然其内部有消息循环体,用于 接收应用程序本身或者Executor中的消息,/javassc.start();javassc.awaitTermination();javassc.close();}private static JavaStreamingContext createContext(String checkpointDirectory, SparkConf conf) {// If you do not see this printed, that means the StreamingContext has been loaded// from the new checkpointSystem.out.println("Creating new context");// Create the context with a 5 second batch sizeJavaStreamingContext ssc = new JavaStreamingContext(conf, Durations.seconds(10));ssc.checkpoint(checkpointDirectory);return ssc;} }class JDBCWrapper {private static JDBCWrapper jdbcInstance = null;private static LinkedBlockingQueue<Connection> dbConnectionPool = new LinkedBlockingQueue<Connection>();static {try {Class.forName("com.mysql.jdbc.Driver");} catch (ClassNotFoundException e) {// TODO Auto-generated catch blocke.printStackTrace();} }public static JDBCWrapper getJDBCInstance() {if(jdbcInstance == null) {synchronized (JDBCWrapper.class) {if(jdbcInstance == null) {jdbcInstance = new JDBCWrapper();} }}return jdbcInstance; }private JDBCWrapper() {for(int i = 0; i < 10; i++){try {Connection conn = DriverManager.getConnection("jdbc:mysql://Master:3306/sparkstreaming","root", "root");dbConnectionPool.put(conn);} catch (Exception e) {// TODO Auto-generated catch blocke.printStackTrace();} } }public synchronized Connection getConnection() {while(0 == dbConnectionPool.size()){try {Thread.sleep(20);} catch (InterruptedException e) {// TODO Auto-generated catch blocke.printStackTrace();} }return dbConnectionPool.poll();}public int[] doBatch(String sqlText, List<Object[]> paramsList){Connection conn = getConnection();PreparedStatement preparedStatement = null;int[] result = null;try {conn.setAutoCommit(false);preparedStatement = conn.prepareStatement(sqlText);for(Object[] parameters: paramsList) {for(int i = 0; i < parameters.length; i++){preparedStatement.setObject(i + 1, parameters[i]);} preparedStatement.addBatch();}result = preparedStatement.executeBatch();conn.commit();} catch (SQLException e) {// TODO Auto-generated catch blocke.printStackTrace();} finally {if(preparedStatement != null) {try {preparedStatement.close();} catch (SQLException e) {// TODO Auto-generated catch blocke.printStackTrace();} }if(conn != null) {try {dbConnectionPool.put(conn);} catch (InterruptedException e) {// TODO Auto-generated catch blocke.printStackTrace();} }}return result; }public void doQuery(String sqlText, Object[] paramsList, ExecuteCallBack callback){Connection conn = getConnection();PreparedStatement preparedStatement = null;ResultSet result = null;try {preparedStatement = conn.prepareStatement(sqlText);for(int i = 0; i < paramsList.length; i++){preparedStatement.setObject(i + 1, paramsList[i]);} result = preparedStatement.executeQuery();try {callback.resultCallBack(result);} catch (Exception e) {// TODO Auto-generated catch blocke.printStackTrace();} } catch (SQLException e) {// TODO Auto-generated catch blocke.printStackTrace();} finally {if(preparedStatement != null) {try {preparedStatement.close();} catch (SQLException e) {// TODO Auto-generated catch blocke.printStackTrace();} }if(conn != null) {try {dbConnectionPool.put(conn);} catch (InterruptedException e) {// TODO Auto-generated catch blocke.printStackTrace();} }} }}interface ExecuteCallBack {void resultCallBack(ResultSet result) throws Exception;}class UserAdClicked {private String timestamp;private String ip;private String userID;private String adID;private String province;private String city;private Long clickedCount;public String getTimestamp() {return timestamp;}public void setTimestamp(String timestamp) {this.timestamp = timestamp;}public String getIp() {return ip;}public void setIp(String ip) {this.ip = ip;}public String getUserID() {return userID;}public void setUserID(String userID) {this.userID = userID;}public String getAdID() {return adID;}public void setAdID(String adID) {this.adID = adID;}public String getProvince() {return province;}public void setProvince(String province) {this.province = province;}public String getCity() {return city;}public void setCity(String city) {this.city = city;}public Long getClickedCount() {return clickedCount;}public void setClickedCount(Long clickedCount) {this.clickedCount = clickedCount;} }class AdClicked {private String timestamp;private String adID;private String province;private String city;private Long clickedCount;public String getTimestamp() {return timestamp;}public void setTimestamp(String timestamp) {this.timestamp = timestamp;}public String getAdID() {return adID;}public void setAdID(String adID) {this.adID = adID;}public String getProvince() {return province;}public void setProvince(String province) {this.province = province;}public String getCity() {return city;}public void setCity(String city) {this.city = city;}public Long getClickedCount() {return clickedCount;}public void setClickedCount(Long clickedCount) {this.clickedCount = clickedCount;} }class AdProvinceTopN {private String timestamp;private String adID;private String province;private Long clickedCount;public String getTimestamp() {return timestamp;}public void setTimestamp(String timestamp) {this.timestamp = timestamp;}public String getAdID() {return adID;}public void setAdID(String adID) {this.adID = adID;}public String getProvince() {return province;}public void setProvince(String province) {this.province = province;}public Long getClickedCount() {return clickedCount;}public void setClickedCount(Long clickedCount) {this.clickedCount = clickedCount;} }class AdTrendStat {private String _date;private String _hour;private String _minute;private String adID;private Long clickedCount;public String get_date() {return _date;}public void set_date(String _date) {this._date = _date;}public String get_hour() {return _hour;}public void set_hour(String _hour) {this._hour = _hour;}public String get_minute() {return _minute;}public void set_minute(String _minute) {this._minute = _minute;}public String getAdID() {return adID;}public void setAdID(String adID) {this.adID = adID;}public Long getClickedCount() {return clickedCount;}public void setClickedCount(Long clickedCount) {this.clickedCount = clickedCount;} }class AdTrendCountHistory{private Long clickedCountHistoryLong;public Long getClickedCountHistoryLong() {return clickedCountHistoryLong;}public void setClickedCountHistoryLong(Long clickedCountHistoryLong) {this.clickedCountHistoryLong = clickedCountHistoryLong;} } 本篇文章为转载内容。原文链接:https://blog.csdn.net/tom_8899_li/article/details/71194434。 该文由互联网用户投稿提供,文中观点代表作者本人意见,并不代表本站的立场。 作为信息平台,本站仅提供文章转载服务,并不拥有其所有权,也不对文章内容的真实性、准确性和合法性承担责任。 如发现本文存在侵权、违法、违规或事实不符的情况,请及时联系我们,我们将第一时间进行核实并删除相应内容。
2023-02-14 19:16:35
297
转载
JQuery插件下载
...e.css库,巧妙地实现了侧边栏的平滑滑动效果,使用户在浏览网站时享受流畅的交互体验。其设计简洁高效,适用于各种需要侧边栏菜单的网页布局。Tuxedo-menu.js不仅提供基本的侧边栏展开与收起功能,还支持与流行的metisMenu插件兼容,进一步丰富了菜单结构,允许用户自定义子菜单的显示方式,例如二级菜单的折叠与展开,以及动态调整菜单项的层级关系。这种灵活性使得网站开发者可以根据具体需求定制菜单样式,满足不同场景下的使用需求。此外,该插件注重响应式设计,确保在不同设备和屏幕尺寸下都能呈现出最佳的视觉效果和操作体验。无论是桌面电脑还是移动设备,Tuxedo-menu.js都能适应并优化,为用户提供一致的高质量体验。通过整合animate.css的动画效果,Tuxedo-menu.js为侧边栏菜单增添了视觉上的吸引力,使得简单的导航操作变得生动有趣。这不仅提升了用户在网站上的停留时间,也增强了用户的满意度和网站的整体品牌形象。总之,Tuxedo-menu.js是一款功能强大、易于集成、高度可定制的jQuery侧边栏菜单插件,适合广泛应用于各类网站项目中,旨在提供高效、美观且互动性强的菜单解决方案。 点我下载 文件大小:48.90 KB 您将下载一个JQuery插件资源包,该资源包内部文件的目录结构如下: 本网站提供JQuery插件下载功能,旨在帮助广大用户在工作学习中提升效率、节约时间。 本网站的下载内容来自于互联网。如您发现任何侵犯您权益的内容,请立即告知我们,我们将迅速响应并删除相关内容。 免责声明:站内所有资源仅供个人学习研究及参考之用,严禁将这些资源应用于商业场景。 若擅自商用导致的一切后果,由使用者承担责任。
2024-09-28 20:45:53
102
本站
CSS
...portant声明、层级关系以及CSS定制特性以达到预期效果,仍需开发者深入理解和灵活应用CSS样式选择器优先级规则。 值得注意的是,W3C在不断更新和完善CSS规范的过程中,也在探讨关于样式优先级的进一步优化方案。例如,在草案阶段的CSS Cascading and Inheritance Level 4(CSS层叠和继承第4级)中,提出了新的计算方式和覆盖规则,旨在为更复杂的组件化、模块化前端架构提供更精细的样式控制能力。因此,持续关注CSS标准的发展动态,将有助于我们与时俱进地掌握和利用样式优先级这一核心概念,实现高效且优雅的网页样式设计。
2023-11-06 08:37:41
535
键盘勇士
JQuery
...通过描述元素的属性、层级关系等特征来选取需要操作的DOM元素。在本文中,jQuery使用了CSS选择器语法来查找ID以“i”开头的div元素,例如$(div id^= i ),其中 id^= i 就是一个CSS选择器,表示匹配所有id属性值以字符串“i”开头的元素。 DOM操作 , DOM(Document Object Model)操作是指在网页加载后,通过JavaScript动态修改或访问HTML文档结构与内容的过程。在jQuery库中,提供了丰富且易于使用的DOM操作方法,如查找元素、改变内容、添加或删除节点等,从而极大地提升了前端开发者对页面元素进行动态控制的能力。在文章示例中,通过jQuery的选择器功能实现对ID以特定字符开头的元素进行筛选和操作,就是DOM操作的一种具体应用。
2023-06-13 17:39:52
322
软件工程师
HTML
...元素,以及它们之间的层级关系。格式化HTML代码是为了让代码更易读、更符合规范,便于开发者理解和修改网页结构。 格式化工具 , 在编程领域,格式化工具是一种软件或在线服务,能够自动调整代码的布局和样式,使其遵循一定的编码风格或约定。在本文中,提及的格式化工具如Notepad++、Sublime Text、Online HTML Formatter等,可以将混乱无序的HTML代码按照特定规则进行排列,通过添加缩进、换行等提高代码的可读性和维护性。 结构层次 , 在网页开发中,结构层次指的是HTML代码中的元素嵌套关系及其视觉呈现的逻辑层级。通过合理的结构层次设计,开发者能够清晰地表达出网页中各部分内容的从属关系和重要程度。经过格式化的HTML代码会展示出明显的结构层次,例如头部(head)、主体(body)、各个区块(div)及其中的内容(p),从而方便阅读、查找和修改。
2023-07-25 14:28:54
508
程序媛
MySQL
在深入了解MySQL的常规连接与SSH连接后,我们可以进一步探索数据库安全和远程访问的最新技术和实践。近年来,随着云计算和大数据的发展,数据安全性问题日益凸显,如何确保数据库连接的安全性成为业界关注焦点。 2023年,MySQL官方发布了新版本,强化了SSL加密连接功能,用户可以设置强制使用SSL连接到MySQL服务器,以保护数据传输过程中不被窃取或篡改。此外,一些云服务提供商如阿里云、AWS等也提供了基于VPC(虚拟私有云)环境下的MySQL数据库连接方案,通过私有网络和子网策略增强数据库连接的安全层级。 另一方面,针对SSH隧道技术,开发者们正在研究如何优化其性能并提高可用性。例如,通过跳板机设置减少网络延迟,或者结合密钥对认证代替密码验证以提升安全性。同时,DevOps领域也在积极倡导采用自动化工具(如Ansible、Terraform)来配置和管理SSH隧道及MySQL连接,以实现更加高效和安全的运维流程。 此外,随着Kubernetes和Docker容器化技术的广泛应用,为MySQL数据库提供安全连接的方式也在发生变革。例如,利用Kubernetes中的Ingress资源,可实现从外部网络到集群内MySQL服务的安全访问,并且支持自动化的SSL证书管理和轮换。 总的来说,在关系型数据库管理系统中,MySQL连接方式的演进与发展,始终紧跟时代步伐,不断融入最新的安全理念和技术手段,以适应日益复杂的数据安全需求。对于技术人员而言,持续关注这些领域的动态和实践,无疑将有助于提升自身在数据库安全管理方面的专业素养和实战能力。
2023-06-22 12:09:56
134
码农
PHP
...义,比如用来表示资源层级关系。本文讨论了如何在遵循RESTful原则设计API时,在URL路径中妥善处理点(.)符号,确保其语义明确且符合路由规范。
2024-01-26 10:56:09
61
追梦人_t
PostgreSQL
...钥匙。PostgreSQL,这款开源的关系型数据库管理系统,就像是开发者们手里的瑞士军刀,功能强大得不得了,灵活性更是让它圈粉无数,实实在在地赢得了广大开发者的青睐和心水。这篇东西,我将手把手带你潜入PostgreSQL索引的深处,教你如何妙用它们,让咱们的应用程序性能嗖嗖提升,飞得更高更稳!让我们一起踏上这场数据查询的优化之旅吧! 二、索引基础与理解 1. 索引是什么? 索引就像书的目录,帮助我们快速找到所需的信息。在数据库这个大仓库里,索引就像是一本超详细的目录,它能够帮助数据库系统瞬间找到你要的那一行数据,而不需要像翻箱倒柜一样把整张表从头到尾扫一遍。 2. PostgreSQL的索引类型 PostgreSQL支持多种索引类型,如B-Tree、GiST、GIN等。其实吧,B-Tree是最家常便饭的那个,基本上大多数情况下它都能派上用场;不过呢,遇到那些比较复杂的“角儿”,比如JSON或者数组这些数据类型,就得请出GiST和GIN两位大神了。 sql -- 创建一个B-Tree索引 CREATE INDEX idx_users_name ON users (name); 三、选择合适的索引策略 1. 索引选择原则 选择索引时,要考虑查询频率、数据更新频率以及数据分布。频繁查询且更新少的列更适合建立索引。 2. 复合索引 对于同时包含多个字段的查询,可以创建复合索引,但要注意索引的顺序,通常应将最常用于WHERE子句的列放在前面。 sql CREATE INDEX idx_users_first_last ON users (first_name, last_name); 四、优化查询语句 1. 避免在索引列上进行函数操作 函数操作可能导致索引失效,尽量避免在索引列上使用EXTRACT、DATE_TRUNC等函数。 2. 使用覆盖索引 覆盖索引是指查询结果可以直接从索引中获取,减少I/O操作,提高效率。 sql CREATE INDEX idx_users_email ON users (email) WHERE is_active = true; 五、维护和监控索引 1. 定期分析和重建索引 使用ANALYZE命令更新统计信息,当索引不再准确时,使用REINDEX命令重建。 2. 使用pg_stat_user_indexes监控 pg_stat_user_indexes视图可以提供索引的使用情况,包括查询次数、命中率等,有助于了解并调整索引策略。 六、结论 通过合理的索引设计和优化,我们可以显著提升PostgreSQL的查询性能。然而,记住,索引并非万能的,过度使用或不适当的索引可能会带来反效果。在实际操作中,咱们得根据业务的具体需求和数据的特性来灵活调整,让索引真正变成提升数据库性能的独门秘籍。 在这个快速变化的技术世界里,持续学习和实践是关键。愿你在探索PostgreSQL索引的道路上越走越远,收获满满!
2024-03-14 11:15:25
495
初心未变-t
Java
...用户体验,我们也需要实现节点的收起功能。今天我们就来聊一聊这个话题。 二、树形表格的基本概念 首先,我们需要了解一下什么是树形表格。树形表格这个东西,其实是一种特别的数据结构,它就像是由很多小单元——我们称之为节点——堆叠组合起来的。每个节点呢,都有可能怀抱自己的“孩子”节点,一层层地构建出一个丰富的层级结构来。节点之间通过父子关系连接在一起,形成一棵树状结构。 三、异步加载的实现 那么,如何实现树形表格的异步加载呢?其实非常简单,我们可以利用Java中的异步编程模型——CompletableFuture。下面是一个简单的例子: java CompletableFuture.supplyAsync(() -> { // 这里是获取数据的逻辑 List nodes = getNodes(); return nodes; }, executorService); 在这个例子中,我们创建了一个CompletableFuture对象,并传入一个FutureTask作为参数。FutureTask会执行我们的数据获取逻辑,并返回结果。executorService是我们定义的一个线程池,用于异步执行任务。 四、节点收起的实现 接下来,我们来看看如何实现节点的收起功能。一般来说,我们会为每个节点设置一个展开/收起的状态。当状态切换到“展开”模式时,咱们就大方地把节点里的内容亮出来给大家看;而一旦状态变成了“收起”,咱就悄悄地把这些内容藏起来,不让大家瞧见。下面是一个简单的例子: java public class TreeNode { private boolean expanded; public void setExpanded(boolean expanded) { this.expanded = expanded; } public boolean isExpanded() { return expanded; } } 在这个例子中,我们为TreeNode类添加了一个expanded属性,用于表示节点是否被展开。然后,我们提供了setExpanded和isExpanded方法,用于设置和获取节点的状态。 五、总结 总的来说,实现一个异步加载的树形表格并不难,关键是要熟练掌握Java的异步编程模型。实现节点的收起功能其实超级简单,就拿每个小节点来说吧,咱们给它添上一个可以自由切换的“展开”和“收起”的状态按钮就妥妥滴搞定啦!真心希望这篇文章能实实在在帮到你,要是你在阅读过程中有任何疑问、想法或者建议,尽管随时跟我唠唠嗑,我随时待命,洗耳恭听!
2023-03-08 18:52:23
386
幽谷听泉_t
Mongo
NoSQL数据库 , NoSQL(Not Only SQL)是一种非关系型数据库,它与传统的关系型数据库(如MySQL)在数据存储模型和查询方式上有所不同。NoSQL数据库设计灵活,可以支持大规模水平扩展,尤其适合处理海量的、半结构化或非结构化的数据,MongoDB就是其中的一种代表产品。在文章语境中,MongoDB作为NoSQL数据库的实例,以其独特的文档型数据模型和强大的查询操作符受到大数据时代的广泛关注。 文档型数据库 , 文档型数据库是NoSQL数据库的一种类型,其基本的数据单元是文档,通常采用JSON、BSON等格式表示。在MongoDB中,每个文档可以包含多个键值对,并且每个文档可以有不同的结构,即字段的数量、内容和数据类型可以各异。这种灵活性使得文档型数据库非常适合于处理复杂、动态变化的数据结构场景,在本文中,MongoDB的查询操作符就是在文档层级进行操作以实现高效检索。 MongoDB的aggregate框架 , MongoDB的aggregate框架是一个用于处理聚合管道的API,允许用户执行复杂的聚合操作,如分组、筛选、投影和计算统计指标等。通过一系列的聚合阶段(stage),用户可以将原始数据转换并汇总为有意义的信息。例如,在文中提到的案例中,使用$group和$avg操作符配合aggregate方法来计算所有用户的平均年龄,展示了MongoDB在处理数据统计分析任务时的强大功能。
2023-10-04 12:30:27
127
冬日暖阳
Element-UI
...中树的结构来展示具有层级关系的数据。在Element-UI中,树形控件通过父子节点的形式递归呈现数据,允许用户交互式地展开或收起各个节点,以便查看和操作多层次的数据内容。 数据源 , 在本文上下文中,数据源指的是前端应用用于填充树形控件的具体数据集合。这些数据通常以JSON格式表示,包含了节点的标识符、标题、子节点等信息,是驱动树形组件正确渲染与功能实现的基础。 虚拟DOM , 虚拟DOM是现代前端框架(如Vue.js)中的一种重要概念,它是一个轻量级的JavaScript对象表示,用于描述真实DOM结构及其属性。当数据发生变化时,框架首先对虚拟DOM进行高效比对和计算,然后仅针对差异部分更新实际DOM,从而极大地提高页面渲染性能。虽然文章未直接提到虚拟DOM在处理Element-UI树形组件问题中的作用,但在优化大型项目中树状数据的渲染效率时,虚拟DOM技术是不可或缺的一部分。 Element-UI版本问题 , 指在使用Element-UI的过程中,由于不同版本间可能存在API变更、特性增删或已知bug修复等情况,导致在特定版本下树形组件出现无法正常展开或收起的问题。解决此类问题时,开发者需要关注Element-UI的版本更新记录,并根据实际情况选择升级或降级至稳定版本以确保组件的正常运行。 递归组件 , 在Vue.js中,递归组件是指一个组件在其模板内部引用自身,形成无限层级的结构,常用于渲染树形数据。通过递归组件可以高效地处理任意深度的树状数据结构,确保每个节点都能够按照正确的逻辑顺序展开或收起。尽管文章没有明确提到递归组件在处理Element-UI树形组件问题中的具体应用,但理解递归组件的工作原理有助于深入解决这类问题。
2023-08-31 16:39:17
504
追梦人-t
Kylin
...析场景。不同于传统的关系型数据库按行存储数据(即一行内的所有字段数据连续存放),列式存储将数据按照列进行组织和存储,同一列的数据会被聚集在一起。在Kylin中采用列式存储有助于提高查询效率,特别是对于只涉及部分列的分析操作,只需要读取相关列的数据,大幅减少I/O开销,并能高效利用CPU缓存。 Cube构建 , 在Apache Kylin中,Cube是预计算模型的核心概念,它通过对原始数据集进行预聚合,将多维度组合下的复杂查询转化为对预计算结果的快速检索。Cube构建过程是指根据用户定义的维度、度量以及层级关系,对源数据进行ETL处理后,生成并持久化这些预计算结果的过程,旨在提升大规模数据分析时的查询响应速度。 多维数据建模 , 多维数据建模是OLAP(在线分析处理)系统中的核心方法,用于描述和组织业务数据以支持复杂的分析查询。在Kylin中,多维数据建模通常包括定义维度(如时间、地区、产品等)、度量(如销售额、访问量等)及它们之间的层次关系,形成一个多维立方体结构(即Cube)。这种模型便于用户从不同角度、不同粒度对数据进行深入分析与挖掘,实现灵活且高效的商业智能应用。
2023-02-19 17:47:55
129
海阔天空-t
转载文章
...构,定义元素的位置、层级关系以及基础样式,如黑色背景的设置。 CSS(Cascading Style Sheets) , CSS是层叠样式表的简称,是一种样式表语言,用于描述HTML或XML文档的呈现方式,包括布局、颜色、字体等视觉效果。在制作炫酷烟花特效的过程中,CSS负责为烟花提供动画效果所需的样式规则,比如设定烟花的颜色、大小、旋转、透明度变化等属性,以实现不同的形状与动态效果。 JavaScript , JavaScript是一种轻量级的解释型编程语言,常用于给网页添加交互式功能。在该篇文章中,JavaScript扮演了关键角色,编写算法控制烟花的生成、运动轨迹、爆炸形态以及消失等动态过程,使得鼠标点击后能够触发烟花特效,并根据不同类型(分散形、圆形、爱心形)产生相应的视觉效果。 WebGL , 虽然文章未直接提及WebGL,但在类似场景下,它是一个重要的技术名词。WebGL是一种JavaScript API,用于在任何兼容的Web浏览器中呈现交互式2D、3D图形而无需插件。在更复杂的烟花特效实现中,开发者可以利用WebGL结合着色器(shader)进行高性能的三维立体烟花渲染,模拟更加真实和细腻的烟花爆炸效果。
2023-02-15 08:02:38
276
转载
转载文章
...导航结构以及展示具有层级关系的数据。在文章中,jstree被用于创建一个动态加载、可编辑、支持多种操作(如新增、编辑、删除等)和搜索功能的树形组件,并通过配置不同的插件以实现丰富的功能扩展。 AJAX , Asynchronous JavaScript and XML(异步JavaScript与XML),是一种创建快速动态网页的技术。在本文语境下,AJAX用于实现在用户界面与服务器之间异步交换数据,使得jstree能够不刷新整个页面的情况下从data.json文件获取并更新树形结构的数据。 Font-Awesome , Font-Awesome是一套流行的图标字体库,提供了一种方便的方式来使用矢量图形图标代替传统的图片图标。在jstreeDemo项目中,利用Font-Awesome为不同类型的节点设置自定义图标,从而增强树形菜单的视觉表现力和用户体验。 Bootstrap , Bootstrap是Twitter推出的一个用于快速开发Web应用程序和网站的开源前端框架,它包含了CSS和JavaScript组件。在文中提到的jstreeDemo项目中,Bootstrap可能作为项目的UI框架,负责整体布局和样式设计,与jstree插件共同协作,构建美观且响应式的设计效果。 contextmenu , 在jstree插件中,contextmenu是一个用来实现右键菜单功能的插件。当用户在树形菜单中的节点上右击时,可以弹出一个自定义菜单,包含针对该节点的一系列操作选项,如编辑、删除等,在jstreeDemo项目中增强了用户的交互体验。
2023-09-08 13:23:58
53
转载
转载文章
....节点概述 3.节点层级 一.DOM简介 1.什么是DOM 文档对象模型(简称DOM) 是W3C组织推荐的处理可扩展标记语言的标准编程接口 W3C已经定义来一系列DOM接口,通过这些DOM接口可以改变网页的内容、结构样式。 2.DOM 树 文档:一个页面就是一个文档,DOM 中使用 document 表示 元素:页面中的所有标签都是元素,DOM 中使用 element 表示 节点:网页中的所有内容都是节点(标签、属性、文本、注释等),DOM 中使用 node 表示 文档树(Dom树):以html为根节点,形成的一颗倒立的树状结构,我们成为DOM树;这个树上所有的东西都叫节点,节点有很多类,比如文本节点,元素节点等等,这些节点如果我们通过DOM方法去获取或者其他的操作去使用就叫做DOM对象,所有节点都是DOM对象 二.获取元素的方法 1.获取页面中的元素可以使用以下几种方式 根据ID获取 根据标签名获取 通过HTML5新增的方法获取 特殊元素获取 1.根据ID获取 使用getElementByld()方法可以获取带有ID的元素对象 getElementByld(),是document下的一个方法 代码演示 <body><div id="time">2020-11-26</div><script>// 1.因为我们文档页面从上往下加载,所以先得有标签 所以我们的script写在标签下面// 2. document文档 get 获得 element 元素 by 通过 驼峰命名法// 3.参数 id是大小写敏感的字符串// 4.返回的是一个对象var timer = document.getElementById('time');console.log(timer);// 5.console.dir 打印我们返回得的元素对象 更好的查看里面的属性和方法console.dir(timer);</script></body> 2.根据标签名获取 使用getElementsByTagName()方法可以返回带有指定标签名的对象的集合 语法如下 document.getElementsByTagName('标签名') 注意: 1.因为得到的是一个对象的集合,使用我们想要操作里面的元素就需要遍历 得到元素对象是动态的 代码演示 <body><ul><li>我们的征程是星辰大海</li><li>我们的征程是星辰大海</li><li>我们的征程是星辰大海</li><li>我们的征程是星辰大海</li><li>我们的征程是星辰大海</li></ul><ul id="nav"><li>心存感恩,所遇皆美好~</li><li>心存感恩,所遇皆美好~</li><li>心存感恩,所遇皆美好~</li><li>心存感恩,所遇皆美好~</li><li>心存感恩,所遇皆美好~</li></ul><script>// 1.返回的是 获取过来元素对象的集合 以伪数组的形式存储的var lis = document.getElementsByTagName('li')console.log(lis);// 2.如果想要依次打印里面的元素对象我们可以采取遍历方式for (var i = 0; i < lis.length; i++) {console.log(lis[i]);}// 3.这里可以是可以获取标签的.getElementsByTagName()可以得到这个元素里面的某些标签var nav1 = document.getElementById('nav') //这个获取nav元素var navli = nav.getElementsByTagName('li') //这里是获取nav 里面的li标签 要先获取 nav元素在获取里面的liconsole.log(navli);</script></body> 3.通过 HTML5 新增的方法获取(注意兼容) 1. document.getElementsByClassName(‘类名’);// 根据类名返回元素对象集合 2. document.querySelector('选择器'); // 根据指定选择器返回第一个元素对象 3. document.querySelectorAll('选择器'); // 根据指定选择器返回所有元素对象集合 注意:querySelector 和 querySelectorAll里面的选择器需要加符号,比如:document.querySelector(’nav’); 代码演示 <body><div class="box">盒子1</div><div class="box">盒子2</div><div id="nav"><ul><li>首页</li><li>产品</li></ul></div><script>// 1. getElementsByClassName 根据类名获得某些元素集合var boxs = document.getElementsByClassName('box');console.log(boxs);// 2. querySelector 返回指定选择器的第一个元素对象 切记 里面的选择器需要加符号 .box navvar firstBox = document.querySelector('.box');console.log(firstBox);var nav = document.querySelector('nav');console.log(nav);var li = document.querySelector('li');console.log(li);// 3. querySelectorAll()返回指定选择器的所有元素对象集合var allBox = document.querySelectorAll('.box');console.log(allBox);var lis = document.querySelectorAll('li');console.log(lis);</script> 4.获取特殊元素(body,html) 获取body元素 - doucumnet.body // 返回body元素对象 获取html元素 . document.documentElement // 返回html元素对象 代码演示 <body><script>// 获取bdoy元素var bodyEle = document.bodyconsole.log(bodyEle); //返回body元素// 获取html元素var htmlEle = document.documentElementconsole.log(htmlEle); //返回html元素</script></body> 三.事件基础 1.事件概述 JavaScript 使我们有能力创建动态页面,而事件是可以被 JavaScript 侦测到的行为。 简单理解: 触发— 响应机制。 网页中的每个元素都可以产生某些可以触发 JavaScript 的事件,例如,我们可以在用户点击某按钮时产生一个 事件,然后去执行某些操作。 代码演示 <body><button id="btn">浩哥</button><script>// 点击一个按钮,弹出一个对话框// 1.事件是有三部分组成的 1.事件源 2.事件类型 3.事件处理程序 也称为事件三要素// (1).事件源 事件被触发的对象 var but = document.getElementById('btn')// (2).事件类型 如何触发 什么事件 比如鼠标点击(onclick) 还是鼠标经过还是????// (3).事件处理程序 通过一个函数赋值的方式 完成 因为函数就是实现某种功能的but.onclick = function() {alert('浩哥爱编程')}</script></body> 2.执行事件的步骤 1. 获取事件源DOM对象(意思是你要获取那个元素) 2. 注册事件(绑定事件 意思是通过什么方式来处理比如是鼠标经过还是鼠标点击等等行为) 3. 添加事件处理程序(采取函数赋值形式 意思是你想做啥) 代码演示 <body><div>123</div><script>// 事件执行步骤 点击div 控制台输出我被选中了// 1.获取事件源var div = document.querySelector('div')// 2.绑定事件 注册事件// div.onclick// 3.添加事件处理程序div.onclick = function() {console.log('我被点击了');}</script></body> 3.常见的鼠标事件 onmouseenter鼠标移入事件 onmouseleave鼠标移出事件 四.操作元素 JS的DOM操作可以改变网页内容、结构和样式,利用DOM操作元素来改变元素里面的内容、属性等。注意以下都是属性 1.操作元素内容(改变元素内容) elemeny.innerText 从起始位置到终止位置的内容,但它去除html标签,同时空格和换行也会去掉 elemernt.innerHTML 起始位置到终止位置的全部内容,包括html标签,同时保留空格和换行 elemernt.Content可以获取隐藏元素的文本,包含换行和空白 代码演示 <title>Document</title><style>div,p {height: 30px;width: 300px;line-height: 30px;text-align: center;color: fff;background-color: pink;}</style></head><body><button>显示当前系统时间</button><div>某个时间</div><p>123</p><script>// 当我们点击了按钮,div里面的文字会发生变化// 1.获取元素 注意这里的按钮 和div都要获取到 因为 点击按钮div里面要发生变化所以都要获取var but = document.querySelector('button');var div = document.querySelector('div');// 2.绑定事件// but.onclick// 3.程序处理but.onclick = function() {// 改变元素内容 element(元素).innerTextdiv.innerText = '2020-11-27'}// 4.我们元素可以不用添加事件,就可以直接显示日期var p = document.querySelector('p');p.innerText = '2020-11-27';</script> elemeny.innerText和elemeny.innerHTML的区别 代码演示 <body><div></div><p></p><ul><li> 文字</li><li>123</li></ul><script>// innertText 和 innertHTML 的区别// 1. innerText 不识别html标签 非标准 去除空格和换行var div = document.querySelector('div');div.innerText = '<strong>今天是:</strong> 2020';// 2.innertHTML 识别html标签 W3C标准 保留空格和换行的 推荐尽量使用这个 因为这个是标准var p = document.querySelector('p')p.innerHTML = '<strong>今天是:</strong> 2020';// 3.这俩个属性是可读写的 意思是 除了改变内容还可以元素读取里面的内容的var ul = document.querySelector('ul')console.log(ul.innerText);console.log(ul.innerHTML);// .4innerHtml innerText 之间的区别:设置内容的时候,如果内容当中包含标签字符串 innerHtml会有标签的特性,也就是说标签会在页面上生效如果内容当中包含标签字符串 innerText会把标签原样展示在页面上,不会让标签生效读取内容的时候,如果标签内部还有其它标签,innerHtml会把标签内部带着其它的标签全部输出如果标签内部还有其它标签,innerText只会输出所有标签里面的内容或者文本,不会输出标签如果标签内部没有其它标签,他们两个一致;都是读取文本内容,innerHtml会带空白和换行</script></body> 2. 操作常见元素属性 innerText、innerHTML 改变元素内容 src、href id、alt、title 代码演示 <body><button id="ldh">刘德华</button><button id="zxy">张学友</button><br><img src="./images/ldh.jpg" alt="" width="200px" height="200px" title="刘德华" id="img"><script>// 修改属性 src// 我们可以操作元素得方法 来修改元素得属性 就是 元素的是什么属性 在重新给值就可以完成相应的赋值操作了// 1.获取元素var ldh = document.getElementById('ldh')var zxy = document.getElementById('zxy')var img = document.getElementById('img')// 2.注册事件 程序处理zxy.onclick = function() {// 当我们点击了图片的时候图片路径就发生变化 这里的.表示 的 得意思 img对象下的src属性img.src = './images/zxy.jpg';// 当我们变换图片得同时里面得title也要跟着变 所以前面要加上img.img.title = '张学友';}ldh.onclick = function() {img.src = './images/ldh.jpg';img.title = '刘德华';}</script> 3.操作表单元素属性 利用DOM可以操作如下表单元素的属性 type、value、checked、selected、disabled 代码演示: <body><button>按钮</button><input type="text" value="输入内容"><script>// 我想把value里面的输入内容改变为 被点击了// 1.获取元素var but = document.querySelector('button')var input = document.querySelector('input')// 2.注册事件 处理程序but.onclick = function() {// input.innerHTML = '被点击了'; 这个是 普通盒子 比如 div 标签里面的内容// 表单里面的值 文字内容是通过value来修改的input.value = '被点击了'// 如果需要某个表单被禁用 不能再点击了使用 disabled 我们想要这个按钮 button禁用// but.disabled = true// 还有一种写法// this指向的是事件函数的调用者 谁调用就指向谁 这里调用者是btnthis.disabled = true}</script></body> 4.操作元素样式属性 我们可以通过 JS 修改元素的大小、颜色、位置等样式。 1.element.style 行内样式操作 注意: JS 里面的样式采取驼峰命名法 比如 fontSize、 backgroundColor JS 修改 style 样式操作,产生的是行内样式,所以行内式比内嵌式高 代码演示 <style>div {width: 200px;height: 200px;background-color: red;}</style></head><body><div></div><script>// 要求点击div变成粉色 height变为250px// 1.获取元素var div = document.querySelector('div');// 2.注册事件 处理程序div.onclick = function() {// div.style里面的属性 采取的是驼峰命名法// this等于div this调用者 谁调用谁执行this.style.backgroundColor = 'pink'this.style.height = '250px'}</script> 2.element.className 类名样式操作 注意: 如果样式修改较多,可以采取操作类名方式更改元素样式。 class因为是个保留字,因此使用className来操作元素类名属性 className 会直接更改元素的类名,会覆盖原先的类名。 代码演示 <style>div {width: 100px;height: 100px;background-color: pink;}.change {background-color: purple;color: fff;font-size: 25px;margin-top: 100px;}</style></head><body><div class="first">文本</div><script>// 1. 使用 element.style 获得修改元素样式 如果样式比较少 或者 功能简单的情况下使用var test = document.querySelector('div');test.onclick = function() {// this.style.backgroundColor = 'purple';// this.style.color = 'fff';// this.style.fontSize = '25px';// this.style.marginTop = '100px';// 让我们当前元素的类名改为了 change// 2. 我们可以通过 修改元素的className更改元素的样式 适合于样式较多或者功能复杂的情况 如果想继续添加样式即在change添加即可// 3. 如果想要保留原先的类名,我们可以这么做 多类名选择器// this.className = 'change';this.className = 'first change';}</script> 5.自定义属性的操作 js给我们规定了可以自己添加属性 在操作元素属性的时候,元素.语法只能操作元素天生具有的属性,如果是自定义的属性,通过.语法是无法操作的只能通过getAttribute和setAttribute去操作,他俩是通用的方法,无论元素天生的还是自定义的都可以可以操作 1.获取属性值 element.属性 获取属性值。 element.getAttribute(‘属性’); 区别: element.属性 获取内置属性值(元素本身自带的属性 如果是自定义属性不能被获取) element.getAttribute(‘属性’);主要获得自定义的属性 (标准) 我们自定义的属性 2.设置属性值 element.属性 = ‘值’ 设置内置属性值 element.setAttribute(‘属性’,‘值’) 区别: element.属性 设置内置属性值 element.setAttribute(‘属性’);主要设置自定义的属性(标准) 3.移除属性 element.removeAttribute(‘属性’); 代码演示 <body><div id="demo" index="1" class="nav"></div><script>var div = document.querySelector('div');// 1.获取元素的属性值// (1) element.属性console.log(div.id);// (2) element.getAttribute('属性') get获取得到 attribute属性的意思 我们自己添加的属性称之为自定义属性console.log(div.getAttribute('id')); //democonsole.log(div.getAttribute('index')); // 1// 2.设置元素的属性值// (1) element.属性 = '值' div.id = 'test'div.className = 'navs'// (2) element.setAttribute('属性','值')div.setAttribute('index', 2);div.setAttribute('class', 'footer') //这里就是class 不是className 比较特殊// 3.移除属性 removeAttribute(属性)div.removeAttribute('index');</script></body> 只要是自定义属性最好都是用element.setAttribute(‘属性’,‘值’)来设置 如果是自带属性用element.属性来设置 6.H5自定义属性 自定义属性的目的:第一、是为了保存属性 第二、并且使用数据。有一些数据可以保存到页面中而不用保存到数据库中。 自定义属性获取是通过getAttribute(‘属性’) 获取的 但是有些自定义属性很容易引起歧义,不容易判断是元素还是自定义属性 H5给我们新增了自定义属性: 1.设置H5自定义属性 H5规定自定义属性data-开头做为属性名并且赋值 比如<div data-index:“1”> 或者使用JS设置element.setAttribute(‘deta-index’,2) 2.获取H5自定义属性 兼容性获取 element.getAttribute(‘data-index’) 推荐开发中使用这个 H5新增element.dataset.index 或者element.datase[‘index’] ie 11以上才支持 代码演示 <body><div getTime="10" data-index="20" data-name-list="40"></div><script>// 获取元素var div = document.querySelector('div');console.log(div.geTime); //undefined getTime是自定义属性不能直接通过元素的属性来获取 而是用自定义属性来获取的getAttribute(‘属性’)console.log(div.getAttribute('getTime')); //10// H5添加自定义属性的写法以data-开头div.setAttribute('data-time', 30)// 1.兼容性获取H5自定义属性console.log(div.getAttribute('data-time')); // 30// 2.H5新增的获取自定义属性的方法 它只能获取data-开头的// dataset 是一个集合的意思存放了所有以data开头的自定义属性 如果你想取其中的某一个只需要在dataset.的后面加上自定义属性名即可console.log(div.dataset);console.log(div.dataset.time); // 30// 还有一种方法dataset['属性']console.log(div.dataset['time']); // 30// 如果自定义属性里面有多个-链接的单词 我们获取的时候采取驼峰命名法 不用要-了console.log(div.dataset.nameList); // 40console.log(div.dataset['nameList']); // 40</script></body> 五.节点操作 1.为什么要学习节点操作 获取元素通常使用俩种方式 (1)利用DOM提供的方法获取元素 但是逻辑性不强 繁琐 (2)利用节点层级关系获取元素 如 利用父子,兄弟关系获取元素 逻辑性强,但是兼容性不怎么好 2.节点概述 网页中的所有内容都是节点(标签、属性、文本、注释等等) ,在DOM中,节点使用node表示。HTML DOM 树中的所有节点均可通过javascript进行访问,所有HTML元素(节点) 均可被修改,也可以创建或删除 一般地,节点至少拥有nade Type(节点类型)、nodeName(节点名称)和nodeValue(节点值) 这三个基本属性 元素节点 nodeType 为 1 属性节点 node Name为 2 文本节点 nodeValue为 3 (文本节点包含文字、空格、换行等等) 实际开发中,节点操作主要操作的是元素节点 3.节点层级 利用DOM树可以把节点划分为不同得层级关系,常见得是父子兄层级关系 1.父级节点 1.node.parentNode parenNode属性可以返回某节点得父节点,注意是最近的父节点哟!!! 如果指定的节点没有父节点就返回null 代码演示 <body><div class="box"><div class="box1"></div></div><script>var box1 = document.querySelector('.box1')// 得到的是离元素最近的父节点(亲爸爸) 得不到就返回得是nullconsole.log(box1.parentNode); // parentNode 翻译过来就是父亲的节点</script></body> 2.子级节点操作 1.parentNode.children(非标准) parentNode.children 是一个只读属性,返回所有的子元素节点。它只返回子元素节点,其余节点不返回(重点记住这个就好,以后重点使用) 虽然children是一个非标准,但是得到了各个浏览器的支持,我们大胆使用即可!!! 代码演示 <body><ul><li>1</li><li>1</li><li>1</li><li>1</li></ul><script>// DOM 提供的方法(APL)获取 这样获取比较麻烦var ul = document.querySelector('ul')var lis = ul.querySelectorAll('li')// children子节点获取 ul里面所有的小li 放心使用没有限制兼容性 实际开发中经常使用的console.log(ul.children);</script> 如何返回子节点的第一个和最后一个? 2.parentNode.firstElementChild firstElementChild返回第一个子元素节点,找不到则返回unll 3.parentNode.lastElementChild lastElementChild返回最后一个子元素节点,找不到则返回null 注意:这俩个方法有兼容性问题,IE9以上才支持 谨慎使用 但是我们有解决方案 如果想要第一个子元素节点,可以使用 parentNode.chilren[0] 如果想要最后一个子元素节点,可以使用 parentNode.chilren[parentNode.chilren.length - 1] 代码演示 <body><ul><li>1</li><li>2</li><li>3</li><li>4</li><li>5</li></ul><script>var ul = document.querySelector('ul')// 1.firstElementChild 返回第一个子元素节点 ie9 以上才支持注意兼容console.log(ul.firstElementChild);// 2.lastElementChild返回最后一个子元素节点console.log(ul.lastElementChild);// 3.实际开发中用到的既没有兼容性问题又可以返回子节点的第一个和最后一个console.log(ul.children[0]);console.log(ul.children[ul.children.length - 1]); //ul.children.length - 1获取的永远是子节点最后一个</script></body> 3.兄弟节点 1.node.nextSibling nextSibling 返回当前元素的下一个兄弟节点,找不到则返回null。注意包含所有的节点 2.node.previousSibling previousSibling 返回当前元素上一个兄弟节点,找不到则返回null。注意包含所以有的节点 代码演示 <body><div>我是div</div><span>我是span</span><script>var div = document.querySelector('div')// 返回当前元素的下一个兄弟节点nextSibling,找不到返回null。注意包含元素节点或者文本节点等等console.log(div.nextSibling); //这里返回的是text 因为它的下一个兄弟节点是换行// 返回的是当前元素的上一个节点previousSibling,找不到返回null。注意包含元素节点或者文本节点等等console.log(div.previousSibling); //这里返回的是text 因为它的上一个兄弟节点是换行</script></body> 3.node.nexElementSibling nexElementSibling 返回当前元素下一个兄弟元素节点,找不到返回null 4.node.previousElementSibling previousElementSibling返回当前元素上一个兄弟节点,找不到返回null 注意:这俩个方法有兼容性问题,IE9以上才支持 代码演示 <body><div>我是div</div><span>我是span</span><script>var div = document.querySelector('div')// nextElementSiblingd得到下一个兄弟元素节点console.log(div.nextElementSibling); // span // previousElementSibling 得到的是上一个兄弟元素节点console.log(div.previousElementSibling); // null 因为它上面没有兄弟元素了返回空的</script></body> 怎么解决兼容性问题呢? 可以封装一个兼容性函数(简单了解即可 在实际开发中用的不多) function getNextElementSibling(element) {var el = element;while (el = el.nextSibling) {if (el.nodeType === 1) {return el;} }return null;} 4.创建节点 1.document.createElement('tagName') document.createElement( ) 方法创建由 tagName 指定的 HTML 元素。因为这些元素原先不存在的是根据我们的需求动态生成的,所有我们也称为动态创建元素节点 我们创建了节点要给添加到节点里面去 称为 添加节点 1.node.appendChild(child) node.appendChild( )方法将一个节点添加到指定父节点的子节点列表末尾 2.node.insertBefore(child,指定添加元素位置) node.insertBefore( ) 方法将一个节点添加到父节点的指定子节点前面 代码演示 <body><ul><li>1</li></ul><script>// 1.创建节点 createElementvar li = document.createElement('li')// 2.添加节点 创建了节点要添加到某一个元素身上去 叫添加节点 node.appendChild(child) done 父级 child 子级 如果前面有元素了则在后面追加元素类似数组中的push依次追加var ul = document.querySelector('ul')ul.appendChild(li)// 3.添加节点 node.insertBefore(child,指定元素) 在子节点前面添加子节点 child子级你要添加的元素var lili = document.createElement('li')ul.insertBefore(lili, ul.children[0]) //ul.children 这句话的意思是添加到ul父亲的子节点第一个// 总结 如果想在页面中添加元素分为俩步骤1.创建元素 2.添加元素</script></body> 5.删除节点 node.removeChild(child) node.removeChlid()方法从DOM 中删除一个子节点,返回删除的节点 简单点就是从父元素中删除某一个孩子node就是父亲child就是孩子 删除的节点.remove(没有参数) 注意:ie不支持 代码演示 <body><button>按钮</button><ul><li>熊大</li><li>熊二</li><li>熊三</li></ul><script>// 1.获取元素var ul = document.querySelector('ul')var but = document.querySelector('button');// 2.删除元素// but.onclick = function() {// ul.removeChild(ul.children[0])// }// 3.点击按钮键依次删除,最后没有删除内容了 就禁用按钮 disabled = true 禁用按钮语法but.onclick = function() {if (ul.children.length == 0) {this.disabled = true} else {ul.removeChild(ul.children[0])} }</script></body> 6.复制节点(克隆节点) node.cloneNode() node.dloneNode()方法返回调用该方法节点得一个副本,也称为克隆节点/拷贝节点 注意 1.如果括号参数为空或者为false,则是浅拷贝,只复制里面得标签,不复制内容 2.如果括号参数为true,则是深度拷贝,会复制节点本身以及里面所有的内容 代码演示 <body><ul><li>1</li><li>2</li><li>3</li></ul><script>// 1.获取元素var ul = document.querySelector('ul');// 2.复制元素 node.cloneNode() 如果参数括号为空或者false则只会复制元素不会复制内容,如果待有参数true则内容和元素都会被复制var lis = ul.children[0].cloneNode(true);// 3.获取元素ul.appendChild(lis)</script></body> 7.替换(改)节点 node.replaceChild(新节点,替换到什么位置) 代码演示 <body><ul class="list"><li>1</li><li>2</li></ul><script>// 替换(改)节点 父节点.replaceChild(新元素, 替换到什么位置)// (1)获取父元素var ulNode = document.querySelector('.list');// (2)创建新的元素var liRead = document.createElement('li')// (3)给新元素添加内容liRead.innerHTML = '5';// (4)替换元素ulNode.replaceChild(liRead, ulNode.children[1])</script></body> 8.三种动态创建元素区别 document.write() element.innerHTML document.createElement() 区别 document.write()是直接将内容写入页面的内容流,但是文档流执行完毕,它则会导致页面全部重绘 element.innerHTML是将内容写入某个DOM节点,不会导致页面全部重绘 element.innerHTML 创建多个元素效率更高(不要拼接字符串,采取数组形式拼接),结果有点复杂 createElement()创建多个元素效率低一点点,但是结果更加清晰 总结:不同浏览器下,innerHTML效率要比createElement()高 代码演示 <body><button>点击</button><p>abc</p><div class="inner"></div><div class="create"></div><script>// window.onload = function() {// document.write('<div>123</div>');// }// 三种创建元素方式区别 // 1. document.write() 创建元素 如果页面文档流加载完毕,再调用这句话会导致页面重绘// var btn = document.querySelector('button');// btn.onclick = function() {// document.write('<div>123</div>');// }// 2. innerHTML 创建元素var inner = document.querySelector('.inner');// for (var i = 0; i <= 100; i++) {// inner.innerHTML += '<a href="">百度</a>'// }var arr = [];for (var i = 0; i <= 100; i++) {arr.push('<a href="">百度</a>');}inner.innerHTML = arr.join('');// 3. document.createElement() 创建元素var create = document.querySelector('.create');for (var i = 0; i <= 100; i++) {var a = document.createElement('a');create.appendChild(a);}</script></body> 本篇文章为转载内容。原文链接:https://blog.csdn.net/m0_46978034/article/details/110190352。 该文由互联网用户投稿提供,文中观点代表作者本人意见,并不代表本站的立场。 作为信息平台,本站仅提供文章转载服务,并不拥有其所有权,也不对文章内容的真实性、准确性和合法性承担责任。 如发现本文存在侵权、违法、违规或事实不符的情况,请及时联系我们,我们将第一时间进行核实并删除相应内容。
2023-08-04 13:36:05
247
转载
Sqoop
...用场景 Sqoop(SQL-to-Hadoop)作为一款强大的数据迁移工具,主要用于在关系型数据库(如MySQL、Oracle等)和Hadoop生态组件(如HDFS、Hive等)间进行高效的数据导入导出操作。不过在实际操作的时候,由于各家数据库系统对数据类型的定义各不相同,Sqoop这家伙在处理一些特定的数据库表字段类型时,可能就会尥蹶子,给你抛出个ClassNotFoundException异常来。 2. “ClassNotFoundException”问题浅析 场景还原: 假设我们有一个MySQL数据库表,其中包含一种自定义的列类型MEDIUMBLOB。当尝试使用Sqoop将其导入到HDFS或Hive时,可能会遭遇如下错误: bash java.lang.ClassNotFoundException: com.mysql.jdbc.MySQLBlobInputStream 这是因为Sqoop在默认配置下可能并不支持所有数据库特定的内置类型,尤其是那些非标准的或者用户自定义的类型。 3. 解决方案详述 3.1 自定义jdbc驱动类映射 为了解决上述问题,我们需要帮助Sqoop识别并正确处理这些特定的列类型。Sqoop这个工具超级贴心,它让用户能够自由定制JDBC驱动的类映射。你只需要在命令行耍个“小魔法”,也就是加上--map-column-java这个参数,就能轻松指定源表中特定列在Java环境下的对应类型啦,就像给不同数据类型找到各自合适的“变身衣裳”一样。 例如,对于上述的MEDIUMBLOB类型,我们可以将其映射为Java的BytesWritable类型: bash sqoop import \ --connect jdbc:mysql://localhost/mydatabase \ --table my_table \ --columns 'id, medium_blob_column' \ --map-column-java medium_blob_column=BytesWritable \ --target-dir /user/hadoop/my_table_data 3.2 扩展Sqoop的JDBC驱动 另一种更为复杂但更为彻底的方法是扩展Sqoop的JDBC驱动,实现对特定类型的支持。通常来说,这意味着你需要亲自操刀,写一个定制版的JDBC驱动程序。这个驱动要能“接班” Sqoop自带的那个驱动,专门对付那些原生驱动搞不定的数据类型转换问题。 java // 这是一个简化的示例,实际操作中需要对接具体的数据库API public class CustomMySQLDriver extends com.mysql.jdbc.Driver { // 重写方法以支持对MEDIUMBLOB类型的处理 @Override public java.sql.ResultSetMetaData getMetaData(java.sql.Connection connection, java.sql.Statement statement, String sql) throws SQLException { ResultSetMetaData metadata = super.getMetaData(connection, statement, sql); // 对于MEDIUMBLOB类型的列,返回对应的Java类型 for (int i = 1; i <= metadata.getColumnCount(); i++) { if ("MEDIUMBLOB".equals(metadata.getColumnTypeName(i))) { metadata.getColumnClassName(i); // 返回"java.sql.Blob" } } return metadata; } } 然后在Sqoop命令行中引用这个自定义的驱动: bash sqoop import \ --driver com.example.CustomMySQLDriver \ ... 4. 思考与讨论 尽管Sqoop在大多数情况下可以很好地处理数据迁移任务,但在面对一些特殊的数据库表列类型时,我们仍需灵活应对。无论是对JDBC驱动进行小幅度的类映射微调,还是大刀阔斧地深度定制,最重要的一点,就是要摸透Sqoop的工作机制,搞清楚它背后是怎么通过底层的JDBC接口,把那些Java对象两者之间巧妙地对应和映射起来的。想要真正玩转那个功能强大的Sqoop数据迁移神器,就得在实际操作中不断摸爬滚打、学习积累。这样,才能避免被“ClassNotFoundException”这类让人头疼的小插曲绊住手脚,顺利推进工作进程。
2023-04-02 14:43:37
83
风轻云淡
Golang
...化存储,我们可以采用关系型数据库或者NoSQL数据库。在这里,我们将重点介绍如何使用Golang与MySQL数据库进行交互。 四、Go与MySQL的连接 首先,我们需要引入“database/sql”包,这个包包含了对SQL数据库的基本操作。然后,我们需要创建一个函数来初始化数据库连接。 go import ( "database/sql" _ "github.com/go-sql-driver/mysql" ) func initDB() (sql.DB, error) { db, err := sql.Open("mysql", "user:password@tcp(localhost:3306)/dbname") if err != nil { return nil, err } return db, nil } 五、插入数据 接下来,我们就可以开始使用连接来进行数据的插入操作了。下面是一个简单的例子: go db, err := initDB() if err != nil { panic(err.Error()) } defer db.Close() _, err = db.Exec("INSERT INTO users (username, password) VALUES (?, ?)", "john", "$2a$10$B8AIFbLlWz2fPnZrjL9wmuPfYmV5XKpQyvJ7UeV9nGZIvnpOKwldO.") if err != nil { panic(err.Error()) } 六、查询数据 除了插入数据,我们还需要能够从数据库中查询数据。同样,这也很简单。下面是一个查询的例子: go db, err := initDB() if err != nil { panic(err.Error()) } defer db.Close() rows, err := db.Query("SELECT FROM users WHERE username = ?", "john") if err != nil { panic(err.Error()) } defer rows.Close() for rows.Next() { var username string var password string err = rows.Scan(&username, &password) if err != nil { panic(err.Error()) } fmt.Println(username, password) } 七、总结 通过以上内容,我们可以看出,使用Golang与MySQL进行数据持久化是非常容易的。只需要引入必要的库,就可以开始编写相关的代码了。而且,你知道吗,正因为Golang的独特优势,我们能够编写出超级高效、超稳可靠的代码!所以,如果你正在寻觅一种崭新的法子来搞定数据的长期存储问题,那么我真心推荐你试一试Golang,它绝对会让你眼前一亮!
2023-03-23 17:32:03
468
冬日暖阳-t
Beego
...ub.com/go-sql-driver/mysql" func init() { db, err := sql.Open("mysql", "root:password@/test?charset=utf8") if err != nil { panic(err) } pool := &sql.Pool{MaxOpenConns: 50, MaxIdleConns: 20, DSN: db.DSN} db.Close() db = pool.Get() defer db.Close() } 3.2 合理设置SQL语句 合理的SQL语句能够提高查询效率。比如,咱们在查数据库的时候,尽量别动不动就用“SELECT ”,那可就像大扫荡一样全给捞出来,咱应该更有针对性地只挑选真正需要的字段。对于那些复杂的查询操作,咱得多开动脑筋利用索引这个神器,让它发挥出应有的作用,这样查询速度嗖嗖的,效率杠杠的! 四、优化HTTP请求处理 HTTP请求处理是Web应用的核心部分,也是性能优化的重点。Beego提供了路由、中间件等功能,可以帮助我们优化HTTP请求处理。 4.1 使用缓存 如果某些数据不需要频繁更新,我们可以考虑将其存储在缓存中。这样一来,下回需要用到的时候,咱们就能直接从缓存里把信息拽出来用,就不用再去数据库翻箱倒柜地查询了。这招能大大提升咱们的运行效率! go import "github.com/go-redis/redis/v7" var client redis.Client func init() { var err error client, err = redis.NewClient(&redis.Options{ Addr: "localhost:6379", Password: "", DB: 0, }) if err != nil { panic(err) } } func GetCache(key string) interface{} { val, err := client.Get(key).Result() if err == redis.Nil { return nil } else if err != nil { panic(err) } return val } func SetCache(key string, value interface{}) { _, err := client.Set(key, value, 0).Result() if err != nil { panic(err) } } 4.2 懒加载 对于一些不常用的数据,我们可以考虑采用懒加载的方式。只有当用户确实有需求,急需这些数据的时候,我们才会去加载,这样一来,既能避免不必要的网络传输,又能嗖嗖地提升整体性能。 五、总结 通过上述方法,我们可以在一定程度上提高Beego的性能。但是,性能优化这件事儿可不是一蹴而就的,它需要我们在日常开发过程中不断尝试、不断摸索,像探宝一样去积累经验,才能慢慢摸出门道来。同时,咱们也要留个心眼儿,别光顾着追求性能优化,万一过了头,可能还会惹出些别的麻烦来,比如代码变得复杂得像团乱麻,维护起来也更加头疼。所以说呢,咱们得根据实际情况,做出最接地气、最明智的选择。
2024-01-18 18:30:40
537
清风徐来-t
站内搜索
用于搜索本网站内部文章,支持栏目切换。
知识学习
实践的时候请根据实际情况谨慎操作。
随机学习一条linux命令:
mount /dev/sda1 /mnt
- 挂载设备到指定目录。
推荐内容
推荐本栏目内的其它文章,看看还有哪些文章让你感兴趣。
2023-04-28
2023-08-09
2023-06-18
2023-04-14
2023-02-18
2023-04-17
2024-01-11
2023-10-03
2023-09-09
2023-06-13
2023-08-07
2023-03-11
历史内容
快速导航到对应月份的历史文章列表。
随便看看
拉到页底了吧,随便看看还有哪些文章你可能感兴趣。
时光飞逝
"流光容易把人抛,红了樱桃,绿了芭蕉。"