前端技术
HTML
CSS
Javascript
前端框架和UI库
VUE
ReactJS
AngularJS
JQuery
NodeJS
JSON
Element-UI
Bootstrap
Material UI
服务端和客户端
Java
Python
PHP
Golang
Scala
Kotlin
Groovy
Ruby
Lua
.net
c#
c++
后端WEB和工程框架
SpringBoot
SpringCloud
Struts2
MyBatis
Hibernate
Tornado
Beego
Go-Spring
Go Gin
Go Iris
Dubbo
HessianRPC
Maven
Gradle
数据库
MySQL
Oracle
Mongo
中间件与web容器
Redis
MemCache
Etcd
Cassandra
Kafka
RabbitMQ
RocketMQ
ActiveMQ
Nacos
Consul
Tomcat
Nginx
Netty
大数据技术
Hive
Impala
ClickHouse
DorisDB
Greenplum
PostgreSQL
HBase
Kylin
Hadoop
Apache Pig
ZooKeeper
SeaTunnel
Sqoop
Datax
Flink
Spark
Mahout
数据搜索与日志
ElasticSearch
Apache Lucene
Apache Solr
Kibana
Logstash
数据可视化与OLAP
Apache Atlas
Superset
Saiku
Tesseract
系统与容器
Linux
Shell
Docker
Kubernetes
[云计算技术社区交流平台]的搜索结果
这里是文章列表。热门标签的颜色随机变换,标签颜色没有特殊含义。
点击某个标签可搜索标签相关的文章。
点击某个标签可搜索标签相关的文章。
Apache Atlas
在大数据与云计算技术日新月异的今天,Apache Atlas对HBase表结构变更实时响应机制的实际应用案例日益增多。近期,某大型电商平台就成功借助Atlas实现了其海量数据仓库中HBase表结构变更的自动化管理和同步更新,显著提升了业务系统的稳定性和数据查询效率。 据该平台技术团队介绍,在引入Apache Atlas之前,每当HBase表结构发生变更时,需要手动更新相关依赖服务的元数据信息,不仅耗时费力,且容易出错。而通过集成Atlas的实时响应机制,平台能够确保所有基于元数据的服务和应用程序在表结构变更后第一时间获得准确信息并作出相应调整,极大地提高了运维效率和数据一致性。 同时,Apache社区也在持续优化和发展Atlas项目,以适应更多样化的数据存储需求和技术环境。近期发布的Apache Atlas 2.2版本中,进一步增强了与其他大数据组件(如Kafka、Spark等)的集成能力,并优化了元数据管理界面及API接口,为用户提供了更为便捷和高效的元数据管理解决方案。 此外,业界对于元数据管理重要性的认识也在不断深化。专家指出,随着GDPR、CCPA等数据保护法规的实施,企业对于数据资产的全生命周期管理,尤其是元数据管理的需求将更加迫切。Apache Atlas凭借其强大的实时响应机制以及对企业级元数据管理的支持,将在未来的数据治理领域扮演更加关键的角色。
2023-03-06 09:18:36
442
草原牧歌
SeaTunnel
近期,随着大数据和云计算技术的迅猛发展,数据库管理面临的挑战日益严峻。特别是在企业级应用中,如何高效、可靠地管理和预警数据库容量成为了一个亟待解决的问题。例如,某知名电商公司在“双十一”大促期间,由于数据库容量预警机制缺失,导致系统在高并发访问下崩溃,严重影响了用户体验和业务收入。这一事件再次凸显了数据库容量预警的重要性。 此外,阿里云近期发布了一款全新的数据库管理系统,该系统集成了先进的机器学习算法,能够实时监测数据库容量变化,并在容量接近阈值时自动触发预警机制。这一创新性的解决方案不仅提高了系统的稳定性和可靠性,还大大降低了运维人员的工作负担。该系统已经在多个行业得到了广泛应用,取得了显著的效果。 与此同时,开源社区也在不断推进相关技术的发展。例如,Apache SeaTunnel作为一个强大的数据集成平台,不仅可以用于数据库容量预警,还可以应用于复杂的数据处理和ETL流程。最近,SeaTunnel社区发布了多个新版本,增加了许多实用的功能和优化,使得它在实际应用中更加灵活和高效。 综上所述,随着技术的进步和应用场景的多样化,数据库容量预警机制的建设变得越来越重要。无论是通过商业产品还是开源工具,企业都应该重视并积极采用先进的技术和解决方案,以确保数据库系统的稳定运行。
2025-01-29 16:02:06
73
月下独酌
HessianRPC
...工具后,我们发现其跨平台和跨语言特性对于现代分布式系统架构的重要性日益凸显。近期,随着微服务架构和云计算技术的飞速发展,对数据传输效率与跨环境兼容性的需求更为迫切。例如,在大型云服务商如阿里云、AWS等的实际应用中,采用类似HessianRPC这样的高效序列化协议能够有效降低网络延迟,提高服务间通信效率。 此外,针对序列化过程中可能遇到的ClassNotFoundException问题,业界也推出了多种解决方案。例如,Java 11引入了模块化系统(Jigsaw Project),通过清晰地定义模块间的依赖关系,有助于解决类加载问题,从而减少此类异常的发生。同时,一些开源框架也开始集成更智能的类加载机制,以适应复杂多变的分布式环境。 值得注意的是,尽管HessianRPC具有诸多优势,但随着技术演进,诸如Protocol Buffers、Apache Avro和gRPC等新型序列化和通信框架也逐渐崭露头角,它们在性能优化、数据压缩、API设计等方面提供了更多选择。因此,在实际项目选型时,开发者应结合具体业务场景和技术栈特点,综合评估各种通信框架的优势和适用性,以实现最优的系统设计和开发效率。
2023-04-06 14:52:47
479
半夏微凉-t
Apache Solr
...发处理性能优化的最新技术和实践。 近期,随着大数据应用的不断深化,搜索引擎架构设计与性能优化的重要性日益凸显。Solr作为开源搜索服务器,其对高并发场景的支持能力一直是社区及企业用户关注的重点。最新的Solr 8.x版本引入了一系列性能改进措施,如分布式索引机制的升级、内存管理的优化以及更精细的并发控制策略等,这些都为有效防止和处理ConcurrentUpdateRequestHandlerNotAvailableCheckedException等问题提供了新的解决方案。 同时,针对大型互联网企业的应用场景,有研究者提出了结合云计算技术进行Solr集群扩展和负载均衡的策略,通过容器化部署和动态资源调度,实现并发更新请求的高效处理与故障隔离,从而避免因并发过高导致的各种异常情况。 此外,对于那些需要频繁进行大量数据更新的业务场景,业界也在积极探索采用异步队列、批处理更新等模式来提升系统的吞吐量和响应速度,减少由于并发写入冲突引发的问题。 综上所述,在实际运维和开发过程中,持续跟踪Apache Solr项目的最新进展,深入研究和借鉴相关领域的最佳实践,将有助于我们更好地应对包括ConcurrentUpdateRequestHandlerNotAvailableCheckedException在内的各种并发处理挑战,以确保搜索引擎服务在大数据环境下的稳定性和高性能。
2023-07-15 23:18:25
469
飞鸟与鱼-t
HessianRPC
...,随着微服务架构和云计算技术的普及,轻量级、高性能的远程调用方案如Hessian更受青睐。 实际上,不仅限于Java领域,其他编程语言也在寻求类似的高效数据传输解决方案。例如,Golang社区推出的gRPC框架,它基于Google Protocol Buffers,同样提供了高性能、跨平台的序列化和RPC功能,并且支持HTTP/2协议,进一步优化了网络传输效率。 与此同时,对于大数据量传输的安全性问题,业界提出了多种加密和身份验证机制以配合此类高效协议使用。例如,在使用Hessian进行通信时,可以通过SSL/TLS等加密手段来保护数据安全,确保在提升传输性能的同时,也能满足严格的信息安全要求。 此外,随着物联网(IoT)设备数量的增长以及5G时代的到来,对边缘计算场景下的数据高效传输需求更为迫切。Hessian这类小巧高效的协议,在嵌入式系统和低功耗设备上的应用研究也正在深入展开,未来有望在更多前沿领域发挥关键作用。 总之,在追求数据处理速度与资源优化的道路上,不断探索和实践新的高效数据传输协议和技术,对于构建稳定、安全、高速的信息系统具有重要意义。而深入理解和掌握Hessian这样的工具,则有助于开发者应对日新月异的技术挑战,更好地服务于各行业信息化建设的需求。
2023-11-16 15:02:34
468
飞鸟与鱼-t
转载文章
...入了解了阿里云开发者社区这一汇聚了云计算、大数据、人工智能等前沿技术领域的知识宝库后,我们进一步关注到该平台如何在全球数字化转型浪潮中发挥关键作用。近日,阿里云开发者社区发布了全新的“开发者成长计划”,旨在通过线上线下结合的方式,为全球开发者提供从入门到精通的全方位技术培训与实战指导。 据官方报道,此计划不仅涵盖了热门的技术领域如容器服务、Serverless、数据库优化等深度课程,还特别增设了针对高校学生的专项培养项目,携手各大高校共建产学研一体化的创新生态。此外,社区内举办的各类技术挑战赛和黑客马拉松活动也广受业界好评,这些赛事不仅激励开发者不断提升技术水平,也为众多企业输送了高质量的技术人才。 值得关注的是,阿里云开发者社区近期联合多家国际知名科技企业,共同发起了一系列行业解决方案共创活动。通过开放平台资源和技术支持,鼓励开发者参与到解决实际业务问题的过程中,从而推动产业创新,助力各行业数字化转型进程。 总之,阿里云开发者社区作为连接开发者与行业实践的重要桥梁,正持续以丰富的教育资源、互动交流平台以及创新合作项目,赋能全球开发者群体,共筑数字化未来。
2023-01-31 19:12:04
256
转载
DorisDB
...指出,随着大数据和云计算技术的发展,数据库服务正朝着更高性能、更易扩展的方向演进,而保持数据库版本与服务生态系统的同步更新是实现高效数据管理的基础。 同时,为解决跨版本、跨平台数据库互操作的问题,ODBC等标准接口技术的作用日益凸显。例如,微软近日推出了新版ODBC驱动程序,增强了对最新SQL Server以及其他多种主流数据库的支持,通过优化的连接性能和更全面的API支持,大大降低了因版本不匹配带来的开发与运维难度。 此外,业内专家建议,在进行数据库版本升级时,除了技术层面的考量,企业还应结合业务需求、成本预算以及潜在风险进行全面评估,并制定详细的升级规划和应急预案,确保在提升系统性能的同时,最大限度地保障业务连续性和数据安全性。通过不断跟进行业动态,深入理解并应用最新的数据库技术成果,企业和开发者将能更好地应对数据库版本不匹配等挑战,实现更加稳定、高效的数据库环境构建与运维。
2023-03-28 13:12:45
429
笑傲江湖-t
Greenplum
...们也应该注意到大数据技术领域的另一重要进展,那就是云原生数据库的发展。近年来,随着云计算技术的不断成熟和普及,越来越多的企业开始考虑将他们的数据库迁移到云端,以获得更高的灵活性、可扩展性和成本效益。 例如,亚马逊的Aurora数据库就是一种高度可用、高性能的关系数据库引擎,专为云环境设计。Aurora提供了自动备份和复制功能,确保数据的持久性和灾难恢复能力。此外,谷歌云的Cloud SQL和微软Azure的SQL Database也是云原生数据库的典型代表,它们都提供了自动备份和恢复服务,以及灵活的资源管理和弹性伸缩能力。 除了云数据库之外,开源社区也在不断推进新的数据库技术。比如TiDB,一个分布式NewSQL数据库,它结合了MySQL和Google Spanner的优点,能够在大规模分布式环境中实现水平扩展和强一致性的事务处理。TiDB同样具备强大的备份和恢复机制,支持多种备份策略,满足不同规模和需求的企业。 对于正在评估或已经部署Greenplum的企业来说,了解这些新兴的技术趋势非常重要。通过对比不同的解决方案,企业可以选择最适合自身业务需求的数据库架构,从而在保障数据安全的同时,也能享受到云计算带来的诸多好处。无论是迁移到云数据库还是采用新的开源数据库技术,都应该仔细考量数据迁移的成本、风险以及长期维护的便利性。
2025-02-25 16:32:08
100
星辰大海
Kubernetes
...软宣布将全面拥抱开源社区,这一决定引发了业界广泛关注。作为一家长期以封闭生态著称的公司,微软此举被视为其战略转型的重要一步。微软表示,将开放其核心产品和技术,包括Windows操作系统、Office办公软件以及Azure云平台等,支持开发者使用和贡献代码。这一举动背后的原因及影响值得深入探讨。 首先,从技术角度分析,微软拥抱开源意味着其将整合大量开源项目的技术力量,加速创新步伐。开源社区汇集了全球顶尖的开发者资源,微软的这一转变将为其带来丰富的技术积累和创新能力的提升。同时,开放的核心产品和技术也将吸引更多开发者加入微软生态系统,促进生态繁荣。 其次,从市场层面来看,微软的这一决策旨在巩固其在云计算、企业级应用等领域的竞争优势。随着数字化转型的深入,企业对于云计算服务的需求日益增长,微软通过开放其技术栈,不仅可以吸引更多的客户和合作伙伴,还能加强与竞争对手如亚马逊AWS、谷歌云等的竞争。 此外,从社会影响力角度看,微软的开源战略体现了其对社会责任的担当。开源不仅促进了知识共享和技术创新,也有助于培养下一代开发者,推动全球科技教育的发展。微软的这一行动有望激发更多企业和个人投身于开源事业,共同构建更加开放、包容的科技生态系统。 总之,微软的开源战略不仅是对其自身业务布局的一次重大调整,也是对全球科技行业未来发展路径的一次深刻思考。这一转变将对微软及其合作伙伴、整个科技产业乃至社会产生深远影响,值得持续关注与深入研究。
2024-07-25 01:00:27
117
冬日暖阳
Shell
... (4)思考与交流:如何更有效地学习Shell 学习Shell编程的过程中,理解和记忆固然重要,但动手实践才是巩固知识的关键。遇到不理解的概念时,不妨尝试着自己编写一个小脚本来实现它,这样不仅能加深理解,更能锻炼解决问题的能力。另外,参加技术社区的讨论,翻阅官方宝典,甚至瞅瞅别人编写的脚本代码,都是超级赞的学习方法。 总结起来,Shell编程的世界充满了挑战与乐趣,选择一套适合自己水平且内容充实的教程,结合实际需求编写脚本,你将很快踏上这条充满无限可能的技术之路。记住,耐心和持续实践是成为一位优秀Shell程序员的秘诀,让我们一起在这个领域不断探索、进步吧!
2023-09-05 16:22:17
101
山涧溪流_
Superset
...实上,随着大数据和云计算技术的飞速发展,数据源管理工具的选择与应用正成为各行业数字化转型中的热点话题。近期,Apache Superset社区持续活跃,不断推出新功能以满足用户更复杂多样的需求。 例如,最新版本的Superset已支持更多种类的数据源,包括但不限于Amazon Redshift、Google BigQuery、Snowflake等云数据库服务,这无疑拓宽了用户在混合云或多云环境下的数据集成能力。同时,Superset也在提升安全性方面有所作为,如通过增强SQL Lab的安全策略来保护敏感数据,并优化元数据库管理机制,使得大规模企业级部署更为稳健可靠。 此外,针对现代数据分析工作中实时性要求的提高,Superset也正在积极整合流处理平台,如Kafka、Flink等,以实现对实时数据流的可视化分析。这意味着,在不久的将来,用户可能可以直接在Superset中配置实时数据源,进一步丰富其在业务监控、风险预警等方面的应用场景。 综上所述,掌握Superset数据源管理的基础操作只是第一步,持续关注该领域的技术动态和发展趋势,将有助于我们更好地利用这一强大工具,挖掘数据背后的深层价值,赋能企业决策与创新。
2023-06-10 10:49:30
75
寂静森林
Apache Atlas
...近期,随着大数据和云计算技术的快速发展,企业对元数据管理的需求愈发迫切,Apache Atlas作为一款先进的开源元数据管理系统,在国内外众多大型项目中得到了广泛应用。 延伸阅读一则关于Apache Atlas实际应用的新闻:2022年,某全球知名电商巨头宣布在其数据湖建设中全面采用Apache Atlas进行元数据管理,以应对日益复杂的数据环境带来的挑战。该项目负责人表示,通过有效利用Atlas的REST API接口,不仅成功实现了各类数据实体的自动化创建、管理和追踪,还极大地提升了数据发现的效率和准确性,同时降低了由于权限混乱或实体关联性问题引发的风险。 此外,Apache社区在持续优化Atlas的功能特性,最近发布的Atlas 2.3版本强化了对Kafka、Hive等大数据组件的支持,并增强了API的安全性和易用性,使得开发者能够更加便捷地处理实体创建过程中的各类问题,有力推动了企业在数字化转型过程中的元数据治理实践。 因此,对于正在使用或计划采用Apache Atlas的企业和开发者而言,紧跟官方更新动态,深入研究和掌握其REST API的使用技巧及错误排查方法,无疑将为企业的数据资产管理带来更大的价值。同时,结合业界最佳实践和实时案例分析,有助于不断提升自身的数据治理能力,确保在瞬息万变的技术浪潮中保持竞争力。
2023-06-25 23:23:07
561
彩虹之上
Tomcat
...监控提升系统稳定性的技术文章,文中详细介绍了如何通过JMX监控来实时了解系统资源使用情况,从而实现提前预警和优化调整。这对于正在使用或计划部署JMX监控的企业来说,无疑是一份宝贵的参考资料。此外,该文章还分享了一些最佳实践案例,包括如何合理配置JMX参数以适应不同的业务场景,以及如何结合其他监控工具如Prometheus、Grafana等构建全面的监控体系。 与此同时,随着云计算技术的发展,越来越多的企业选择将业务迁移到云端。然而,云环境下的JMX监控面临着新的挑战,如跨VPC访问、复杂的网络隔离策略等。对此,AWS在其官方博客中发布了一篇文章,深入探讨了如何在AWS环境中高效配置JMX监控,提供了详细的配置指南和常见问题解决方案。这些内容不仅对使用AWS的用户大有裨益,也为其他云平台用户提供了参考思路。 另外,随着微服务架构的普及,传统的JMX监控方式面临诸多限制。为此,Netflix开源了其内部使用的Micrometer库,该库支持多种监控后端,包括Prometheus、Graphite等,大大简化了微服务环境下的监控配置工作。近期,Micrometer团队发布了一系列更新,增加了对更多监控后端的支持,并优化了性能。这一进展对于正在探索微服务监控方案的企业来说,具有重要的参考价值。 以上内容不仅展示了JMX监控领域的最新发展动态,也为读者提供了丰富的实战经验和理论指导。希望这些延伸阅读材料能够帮助大家更好地理解和应用JMX监控技术。
2025-02-15 16:21:00
102
月下独酌
SeaTunnel
...是一个强大的数据集成平台,专为高效处理海量数据而设计。在这次旅行中,我们来聊聊一个让人头疼的问题:“数据库事务提交时卡住了,怎么回事?””这不仅是一个技术难题,更是一次心灵的洗礼,让我们一同揭开它的面纱。 2. 问题初现 在我们开始这段旅程之前,先来了解一下背景故事。想象一下,你是个数据工程师,就像个超级英雄,专门收集各个地方的数据,然后把它们统统带到一个超级大的仓库里。这样,所有的信息都能在一个安全的地方找到啦!你选了Apache SeaTunnel来做这个活儿,因为它在处理数据方面真的很强,能轻松搞定各种复杂的数据流。可是,正当事情好像都在按计划进行的时候,突然蹦出个大麻烦——数据库事务提交居然卡住了。 3. 深入探究 3.1 事务提交失败的原因 首先,我们需要弄清楚为什么会出现这种现象。通常情况下,事务提交失败可能由以下几个原因引起: - 网络连接问题:数据传输过程中出现网络中断。 - 资源不足:数据库服务器资源不足,如内存、磁盘空间等。 - 锁争用:并发操作导致锁定冲突。 - SQL语句错误:提交的SQL语句存在语法错误或逻辑错误。 3.2 如何解决? 既然已经找到了潜在的原因,那么接下来就是解决问题的关键环节了。我们可以从以下几个方面入手: - 检查网络连接:确保数据源与目标数据库之间的网络连接稳定可靠。 - 优化资源管理:增加数据库服务器的资源配额,确保有足够的内存和磁盘空间。 - 避免锁争用:合理安排并发操作,减少锁争用的可能性。 - 验证SQL语句:仔细检查提交的SQL语句,确保其正确无误。 4. 实战演练 为了更好地理解这些问题,我们可以通过一些实际的例子来进行演练。下面我会给出几个具体的代码示例,帮助大家更好地理解和解决问题。 4.1 示例一:处理网络连接问题 java // 这是一个简单的配置文件示例,用于指定数据源和目标数据库 { "source": { "type": "jdbc", "config": { "url": "jdbc:mysql://source_host:port/source_db", "username": "source_user", "password": "source_password" } }, "sink": { "type": "jdbc", "config": { "url": "jdbc:mysql://target_host:port/target_db", "username": "target_user", "password": "target_password" } } } 4.2 示例二:优化资源管理 java // 通过调整配置文件中的参数,增加数据库连接池的大小 { "source": { "type": "jdbc", "config": { "url": "jdbc:mysql://source_host:port/source_db", "username": "source_user", "password": "source_password", "connectionPoolSize": 50 // 增加连接池大小 } }, "sink": { "type": "jdbc", "config": { "url": "jdbc:mysql://target_host:port/target_db", "username": "target_user", "password": "target_password", "connectionPoolSize": 50 // 增加连接池大小 } } } 4.3 示例三:避免锁争用 java // 在配置文件中添加适当的并发控制策略 { "source": { "type": "jdbc", "config": { "url": "jdbc:mysql://source_host:port/source_db", "username": "source_user", "password": "source_password" } }, "sink": { "type": "jdbc", "config": { "url": "jdbc:mysql://target_host:port/target_db", "username": "target_user", "password": "target_password", "concurrency": 10 // 设置并发度 } } } 4.4 示例四:验证SQL语句 java // 在配置文件中明确指定要执行的SQL语句 { "source": { "type": "sql", "config": { "sql": "SELECT FROM source_table" } }, "sink": { "type": "jdbc", "config": { "url": "jdbc:mysql://target_host:port/target_db", "username": "target_user", "password": "target_password", "table": "target_table", "sql": "INSERT INTO target_table (column1, column2) VALUES (?, ?)" } } } 5. 总结与展望 在这次探索中,我们不仅学习了如何处理数据库事务提交失败的问题,还了解了如何通过实际操作来解决这些问题。虽然在这个过程中遇到了不少挑战,但正是这些挑战让我们成长。未来,我们将继续探索更多关于数据集成和处理的知识,让我们的旅程更加丰富多彩。 希望这篇技术文章能够帮助你在面对类似问题时有更多的信心和方法。如果你有任何疑问或建议,欢迎随时与我交流。让我们一起加油,不断进步!
2025-02-04 16:25:24
111
半夏微凉
ZooKeeper
...实上,随着大数据和云计算技术的飞速发展,分布式系统规模日益庞大,对ZooKeeper这类协调服务的性能要求也随之水涨船高。2022年5月,Apache社区发布了一篇深度技术解析文章,专门探讨了如何通过最新的存储技术和架构优化来改善ZooKeeper的磁盘I/O瓶颈。 文中提到,结合最新的NVMe SSD固态硬盘与智能存储分层技术,可以显著提升ZooKeeper的写入速度,有效缓解磁盘压力。此外,社区还提出了一种基于FPGA加速的数据同步算法,该算法能在保持数据一致性的同时,减少不必要的磁盘I/O操作,从而大大提升了集群整体效能。 同时,也有不少开发者在实践中总结出一套完善的ZooKeeper运维策略,比如采用更精细的监控工具实时追踪节点资源使用情况,并配合自动化运维平台进行动态扩容、迁移等操作,以预防磁盘空间不足或I/O性能下降导致的服务中断。 深入研究ZooKeeper源码的专家指出,未来版本的ZooKeeper可能会引入异步刷盘机制及多级日志缓冲设计,这将进一步优化其在高并发场景下的磁盘I/O性能。因此,对于持续关注和使用ZooKeeper的企业和技术团队来说,紧跟社区最新动态并适时调整优化策略至关重要,这样才能确保在复杂多变的技术环境中始终保持系统的稳定性和可靠性。
2023-02-19 10:34:57
127
夜色朦胧
Go Gin
最近,随着云计算和边缘计算技术的发展,实时处理的需求愈发旺盛。例如,自动驾驶汽车需要实时处理传感器数据以确保行车安全,而物联网设备则需要实时接收指令并反馈状态。在这种背景下,像Gin这样的轻量级框架显得尤为重要。特别是在中国,随着5G网络的普及,低延迟的实时通信已经成为各行各业关注的焦点。比如,某知名电商平台最近推出了基于WebSocket的实时库存更新系统,利用Gin框架实现了毫秒级别的数据同步,极大提升了用户体验。此外,清华大学的一项研究指出,使用Gin框架配合Go语言的协程机制,可以显著降低系统资源消耗,这对于需要大规模部署的实时应用来说至关重要。同时,开源社区也在不断为Gin贡献新的功能模块,比如支持更复杂的认证机制和数据加密。这些进展不仅推动了Gin框架的迭代,也为开发者提供了更多可能性。值得注意的是,尽管Gin在实时处理方面表现出色,但在面对极端高并发场景时,仍需结合其他技术手段,如负载均衡器和分布式缓存,以确保系统的稳定性和可靠性。总之,随着技术的不断进步,像Gin这样的工具将继续在实时处理领域发挥重要作用,助力各行各业实现数字化转型。
2025-04-07 16:03:11
65
时光倒流
转载文章
...站的立场。 作为信息平台,本站仅提供文章转载服务,并不拥有其所有权,也不对文章内容的真实性、准确性和合法性承担责任。 如发现本文存在侵权、违法、违规或事实不符的情况,请及时联系我们,我们将第一时间进行核实并删除相应内容。 我踩过的坑,希望大家不用再踩。 到现在我工作 17 年了, 担任架构师的职位也超过了 10 年,担任过像 HP、Amazon 这样的世界级团队的架构师,也担任过像汇量科技这样快速成长的中小企业的技术领导。应 InfoQ 邀请分享一下我的工作感悟,分享内容部分来自成功总结,更多是来自失败的反思,希望我踩过的坑大家可以不用再踩。 “提出问题”难于“解决问题” 作为技术人员,我们已经习惯于作为问题的解决者给出设计方案,而很少以问题提出者的身份去思考设计方案。团队中常见的典型矛盾,就是产品团队和研发团队之间的矛盾。作为研发团队,我们常吐槽产品团队的需求不合理、不懂技术等。其实我们可以试着把自己的工作再往前移一下,不仅仅是去设计架构、实现产品的需求,同时也试着去实现客户的需求,甚至发现潜在的需求。 这时我们就变成了在设计上提出问题的人,你会发现提出问题的同时,在很多时候也需要同样深入的思考。设计一个好的问题,甚至比解决问题更难。 其实即便是软件开发领域的大神 Frederick P. Brooks Jr.(《人月神话》的作者)也会有同样的感叹。 “The hardest part of design is deciding what to design.” – 《The design of design》, by Frederick P. Brooks Jr. 决定“不要什么”比“要什么”更难 也许是由于人性的贪婪,对于软件系统我们同样想要更多:更多功能、更好的性能、更好的伸缩性、扩展性等等。作为软件架构师要明白软件架构设计就是一种取舍或平衡。当大家都在往里面加东西的时候,架构师更应该来做这个说“不”的人。 软件设计和定义过程中存在很多取舍,例如: 完善功能和尽早发布的取舍。 伸缩性和性能的取舍。 著名的 CAP 原则,就是一个很好的取舍指导策略。为了更好的取舍,保持架构风格的一致性,在一开始架构师就应该根据系统的实际需求来定义一些取舍的原则,如: 数据一致性拥有最高优先级。 提前发布核心功能优于完整发布等。 非功能性需求决定架构 因为软件是为了满足客户的功能性需求的,所以很多设计人员可能会认为架构是由要实现的功能性需求决定的。但实际上真正决定软件架构的其实是非功能性需求。 架构师要更加关注非功能性需求,常见的非功能性包括:性能,伸缩性,扩展性和可维护性等,甚至还包括团队技术水平和发布时间要求。能实现功能的设计总是有很多,考虑了非功能性需求后才能筛选出最合适的设计。 以上架构模式来自《面向模式的软件架构》的第一卷,这套书多年来一直是架构师的必读经典。面向架构的模式就是为不同的非功能性需求提供了很好的参考和指导。图中的 Micro-Kernel 模式,更加关注可扩展性和可用性(错误隔离)。 “简单”并不“容易” 很多架构师都会常常提到保持简单,但是有时候我们会混淆简单和容易。简单和容易在英语里也是两个词“simple”和“easy”。 “Simple can be harder than complex: You have to work hard to get your thinking clean to make it simple. But it’s worth it in the end because once you get there, you can move mountains. To be truly simple, you have to go really deep.” –SteveJobs 真正的一些简单的方法其实来自于对问题和技术更深入的理解。这些方案往往不是容易获得的、表面上的方法。简单可以说蕴含着一种深入的技巧在其中。 下面我来举一个例子。 首先我们来回顾一下软件生命周期中各个阶段的成本消耗占比。以下是来一个知名统计机构的分析报告。我们可以看到占比最大的是维护部分,对于这一部分的简化将最具有全局意义。 我曾经开发过一个设备管理系统,移动运营商通过这个系统来管理移动设备,实现包括设备的自动注册、固件和软件的同步等管理功能。这些功能是通过一些管理系统与移动设备间的预定义的交互协议来完成的。 电信专家们会根据业务场景及需求来调整和新增这些交互协议。起初我们采用了一种容易实现的方式,即团队中的软件工程会根据电信专家的说明,将协议实现为对应代码。 之后我们很快发现这样的方式,让我们的工作变得没那么简单。 “I believe that the hardest part of software projects, the most common source of project failure, is communication with the customers and users of that software.” –Martin Fowler 正如软件开发大师 MartinFowler 提到的,“沟通”往往是导致软件项目失败的主要原因。前面这个项目最大的问题是在系统上线后的运行维护阶段,电信专家和开发工程师之间会不断就新的协议修改和增加进行持续的沟通,而他们的领域知识和词汇都有很大的差别,这会大大影响沟通的效率。因此这期间系统的运行维护(协议的修改)变得十分艰难,不仅协议更新上线时间慢,而且由于软件工程对于电信协议理解程度有限,很多问题都要在实际上线使用后才能被电信专家发现,导致了很多的交换和反复。 针对上面提到的问题,后来我们和电信专家一起设计了一种协议设计语言(并提供可视化的工具),这种设计语言使用的电信专家所熟悉的词汇。然后通过一个类似于编译器的程序将电信专家定义好的协议模型转换为内存中的 Java 结构。这样整个项目的运行和维护就变得简单高效了,省去了低效的交流和不准确人工转换。 我们可以看到一开始按电信专家的说明直接实现协议是更为容易的办法,但就整个软件生命周期来看却并不是一个简单高效的方法。 永远不要停止编码 架构师也是程序员,代码是软件的最终实现形态,停止编程会逐渐让你忘记作为程序员的感受,更重要的是忘记其中的“痛”,从而容易产生一些不切实际的设计。 大家可能听说过在 Amazon,高级副总裁级别的 Distinguish Engineer(如:James Gosling,Java 之父),他们每年的编码量也非常大,常在 10 万行以上。 风险优先 架构设计很重要的一点是识别可能存在的风险,尤其是非功能性需求实现的风险。因为这些风险往往没有功能性需求这么容易在初期被发现,但修正的代价通常要比修正功能性需求大非常多,甚至可能导致项目的失败,前面我们也提到了非功能性需求决定了架构,如数据一致性要求、响应延迟要求等。 我们应该通过原型或在早期的迭代中确认风险能够通过合理的架构得以解决。 绝对不要把风险放到最后,就算是一个项目要失败也要让它快速失败,这也是一种敏捷。 从“问题”开始,而不是“技术” 技术人员对于新技术的都有着一种与身俱来的激情,总是乐于去学习新技术,同时也更有激情去使用新技术。但是这也同样容易导致一个通病,就是“当我们有一个锤子的时候看什么都是钉子”,使用一些不适合的技术去解决手边的问题,常常会导致简单问题复杂化。 我曾经的一个团队维护过这样一个简单的服务,起初就是一个用 MySQL 作数据存储的简单服务,由团队的一个成员来开发和维护。后来,这位成员对当时新出的 DynamoDB 产生了兴趣,并学习了相关知识。 然后就发生下面这样的事: 用DynamoDB替换了MySQL。 很快发现DynamoDB并不能很好的支持事务特性,在当时只有一个性能极差的客户端类库来支持事物,由于采用客户端方式,引入了大量的额外交互,导致性能差别达7倍之多。这时候,这个同学就采用了当时在NoSQL领域广泛流行的最终一致技术,通过一个Pub-Sub消息队列来实现最终一致(即当某对象的值发生改变后会产生一个事件,然后关注这一改变的逻辑,就会订阅这个通知,并改变于其相关数据,从而实现不同数据的最终一致)。 接着由于DynamoDB无法提供SQL那样方便的查询机制,为了实现数据分析就又引入了EMR/MapReduceJob。 到此,大家可以看到实现一样的功能,但是复杂性大大增加,维护工作也由一个人变成了一个团队。 过度忙碌使你落后 对于 IT 人而言忙碌已成为了习惯,加班常挂在嘴边。“996”工作制似乎也变成了公司高效的标志。而事实上过度的忙碌使你落后。经常遇见一些朋友,在一个公司没日没夜的干了几年,没有留一点学习时间给自己。几年之后倒是对公司越来越“忠诚”了,但忙碌的工作同时也导致了没有时间更新知识,使得自己已经落后了,连跳槽的能力和勇气都失去了。 过度忙碌会导致没有时间学习和更新自己的知识,尤其在这个高速发展的时代。我在工作经历中发现过度繁忙通常会带来以下问题: 缺乏学习导致工作能力没有提升,而面对的问题却变得日益复杂。 技术和业务上没有更大的领先优势,只能被动紧紧追赶。试想一下,要是你都领先同行业五年了,还会在乎通过加班来早一个月发布吗? 反过来上面这些问题会导致你更加繁忙,进而更没有时间提高自己的技术技能,很快就形成了一个恶性循环。 练过健身的朋友都知道,光靠锻炼是不行的,营养补充和锻炼同样重要。个人技术成长其实也一样,实践和学习是一样重要的,当你在一个领域工作了一段时间以后,工作对你而言就主要是实践了,随着你对该领域的熟悉,能学习的到技术会越来越少。所以每个技术人员都要保证充足的学习时间,否则很容易成为井底之蛙,从而陷入前面提到的恶性循环。 最后,以伟大诗人屈原的诗句和大家共勉:“路漫漫其修远兮,吾将上下而求索“。希望我们大家都可以不忘初心,保持匠心! 作者简介: 蔡超,Mobvista 技术 VP 兼首席架构师,SpotMax 云服务创始人。拥有超过 15 年的软件开发经验,其中 9 年任世界级 IT 公司软件架构师/首席软件架构师。2017 年加入 Mobvista,任公司技术副总裁及首席架构师,领导公司的数字移动营销平台的开发,该平台完全建立于云计算技术之上,每天处理来自全球不同 region 的超过 600 亿次的请求。 在加入 Mobvista 之前,曾任亚马逊全球直运平台首席架构师,亚马逊(中国)首席架构师,曾领导了亚马逊的全球直运平台的开发,并领导中国团队通过 AI 及云计算技术为中国客户打造更好的本地体验;曾任 HP(中国)移动设备管理系统首席软件架构师,该系统曾是全球最大的无线设备管理系统(OMA DM)(客户包括中国移动,中国联通,中国电信等);曾任北京天融信网络安全技术公司,首席软件架构师,领导开发的网络安全管理系统(TopAnalyzer)至今仍被政府重要部门及军队广为采用,该系统也曾成功应用于 2008 北京奥运,2010 上海世博等重要事件的网络安全防护。 本篇文章为转载内容。原文链接:https://blog.csdn.net/Honnyee/article/details/111896981。 该文由互联网用户投稿提供,文中观点代表作者本人意见,并不代表本站的立场。 作为信息平台,本站仅提供文章转载服务,并不拥有其所有权,也不对文章内容的真实性、准确性和合法性承担责任。 如发现本文存在侵权、违法、违规或事实不符的情况,请及时联系我们,我们将第一时间进行核实并删除相应内容。
2023-09-19 14:55:26
78
转载
转载文章
...态与趋势。近期,开源社区和各大科技公司在大规模数据处理领域持续发力,不断优化并推出新的解决方案。 2023年初,PostgreSQL官方发布了其最新稳定版15,增强了对分布式计算、分区表以及JSONB性能的优化,这些改进不仅对Postgres-XL这类基于PostgreSQL构建的分布式数据库有着积极影响,也为未来开发更高效、更具扩展性的数据库集群提供了技术支撑。 与此同时,云服务提供商如AWS也推出了Amazon Aurora Global Database,它利用多区域部署实现强一致性、高可用性和低延迟的全球分布能力,这与Postgres-XL在解决大型企业级应用中的数据扩展性问题上有着异曲同工之妙,值得我们关注和比较学习。 另外,在学术研究方面,有学者正在探索新型分布式事务处理机制,以期在保证ACID特性的同时,进一步提高系统的并发处理能力和资源利用率,这些研究成果有望为包括Postgres-XL在内的分布式数据库产品提供创新思路和技术灵感。 综上所述,随着大数据和云计算技术的发展,分布式数据库架构设计与优化仍然是当前及未来的重要课题,了解Postgres-XL的同时,跟踪最新的数据库技术进展,将有助于我们在实际应用场景中更好地利用和发挥此类数据库的优势。
2023-01-30 11:09:03
94
转载
Docker
随着云计算技术的迅速发展,Docker逐渐成为一种比较普遍的容器化技术。Docker可以轻易地将应用程序及其依赖库封装在一起,形成一个自包含的容器。这种容器化的方式使得开发人员可以更加便捷部署和迁移应用,也让运维工程师更加方便地管理应用程序的运行环境。 除此之外,Docker的机动性也为企业赋予了许多的商业机遇。通过Docker容器化技术,企业可以非常方便地进行业务流程重组,并通过Docker容器的快速迁移,实现资源租赁、跨平台协作等业务场景。这种方式在当下的互联网+时代具有非常广泛的应用前景。 FROM nginx:alpine COPY dist/ /usr/share/nginx/html/ EXPOSE 80 CMD ["nginx", "-g", "daemon off;"] 这段代码是Dockerfile文件中的一个示例。该文件用于创建一个具有Web功能的Docker容器镜像,其以Nginx为基础镜像,将封装好的Web前端代码复制到容器中,并将容器的80端口暴露给外部服务。这样,开发人员可以非常方便地将自己的Web应用封装到Docker容器中,并在需要的时候进行部署。 不过,Docker改造也不是一件轻松的事情。在进行Docker改造时,需要开发人员具备一定的Linux基础知识和Docker技术知识。同时,在容器化过程中,也需要遵循一定的规范和标准,以避免功能冲突和安全问题。 总之,Docker的出现为企业带来了深远的影响。通过Docker容器化技术,企业可以更加便捷地进行应用程序的封装、部署和移植,也可以更加灵活地管理自己的业务流程。在未来的发展中,Docker将会成为更多企业和开发者必备的技术。
2023-07-04 21:55:54
503
算法侠
Docker
...oby并成为推动容器技术开源发展的重要项目之后,全球开发者社区和企业用户对这一变化展开了热烈讨论。事实上,这一更名举措不仅体现了Docker公司对未来技术发展趋势的洞察与布局,也预示着软件容器化技术将进入一个更加开放、通用的新阶段。 近期,InfoQ发布了一篇深度分析文章《从Docker Engine到Moby:容器技术开源演进之路》,详尽解读了此次更名背后的深层次战略意图和技术架构调整。作者指出,Moby项目旨在构建一个模块化、可插拔的容器运行时生态系统,允许开发者自由组合各类组件以满足特定场景需求,这无疑将极大地促进容器技术的创新与应用普及。 与此同时,随着云原生计算基金会(CNCF)托管的Kubernetes逐渐成为容器编排领域的事实标准,Moby项目的推出也为Docker产品提供了更广阔的发展空间和与Kubernetes生态系统的深度融合机会。2021年,Docker宣布与微软Azure达成合作,将在Azure Kubernetes Service(AKS)中集成基于Moby的容器运行时,进一步强化了Moby在云端部署和管理容器化应用的能力。 此外,开源社区也在积极响应这一变革,众多开发者开始探索如何利用Moby开源项目实现跨平台、跨环境的一致性容器体验,并针对不同行业应用场景进行定制化开发。这意味着Moby不仅将成为推动容器技术发展的新引擎,还将为全球范围内的企业和开发者带来更多的创新机遇和可能性。 综上所述,Docker Engine改名为Moby并启动新的开源项目,标志着容器技术领域正经历一场深刻的变革。Moby通过提供更加灵活、通用的容器解决方案,正在重构云计算基础设施的未来形态,而其后续的市场表现及技术革新动向值得业界持续关注与探讨。
2024-01-20 16:56:33
522
电脑达人
ActiveMQ
...微服务架构的普及与云计算技术的发展,消息队列作为实现系统解耦、异步处理的重要工具,其功能特性的丰富性和灵活性显得尤为重要。 例如,在大型分布式系统中,虚拟Topic模式可以有效解决服务间一对多的消息发布难题,尤其在金融交易、社交平台、物联网等场景下,确保信息能够迅速且准确地送达多个目标服务。同时,结合Kafka、RabbitMQ等其他主流消息中间件产品的对比研究,我们可以更深入地探讨虚拟Topic在实际应用场景中的优缺点以及适用范围。 此外,对于消息顺序性要求严格的场景,如证券交易或者日志记录,ActiveMQ提供了Durable Topic和Queue以满足此类需求。而针对虚拟Topic可能存在的消息重复或丢失问题,开发团队正在积极研发优化策略,结合事务、持久化存储等多种技术手段,力求在保证消息高效传递的同时,提供更高级别的数据一致性保障。 因此,持续关注ActiveMQ及其虚拟Topic特性的最新发展动态和技术实践,将有助于开发者更好地应对复杂业务场景下的消息通信挑战,提升系统的稳定性和可扩展性。
2023-02-22 12:28:12
400
春暖花开-t
PostgreSQL
...同时,随着大数据和云计算技术的发展,跨平台、多环境下的数据迁移与同步也日益频繁,这也对数据类型的兼容性及转换机制提出了更高要求。因此,无论是数据库管理员还是软件开发者,都需要紧跟技术潮流,不断学习和完善自身的数据库知识体系,从而有效预防和解决由数据类型转换引发的各种问题。
2023-08-30 08:38:59
296
草原牧歌-t
站内搜索
用于搜索本网站内部文章,支持栏目切换。
知识学习
实践的时候请根据实际情况谨慎操作。
随机学习一条linux命令:
watch -n 5 command
- 每隔5秒执行一次指定命令并更新输出。
推荐内容
推荐本栏目内的其它文章,看看还有哪些文章让你感兴趣。
2023-04-28
2023-08-09
2023-06-18
2023-04-14
2023-02-18
2023-04-17
2024-01-11
2023-10-03
2023-09-09
2023-06-13
2023-08-07
2023-03-11
历史内容
快速导航到对应月份的历史文章列表。
随便看看
拉到页底了吧,随便看看还有哪些文章你可能感兴趣。
时光飞逝
"流光容易把人抛,红了樱桃,绿了芭蕉。"